Pathway Fractional Integral Formulas Associated with the Incomplete ℵ-Functions
Main Article Content
Abstract
In the present work, we establish two pathway fractional integral formulas associated with the Incomplete -functions. Further, we develop some special cases involving various simpler and useful special functions are given to show the importance and utilizations of our main findings. After that we indicate some known results, Bansal and Choi [1] and Nair [2] reduced by our main findings.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
How to Cite
References
M. K. Bansal and J. Choi, A Note on Pathway Fractional Integral Formulas Associated with the Incomplete H−Functions, Int. J. Appl. Comput. Math, 5(5), Art. 133, (2019).
S. S. Nair, Pathway fractional integraion operator, Fract. Calc. Appl. Anal 12(3) , 237–252,(2009).
H. M. Srivastava, Some Double Integrals Stemming from the Boltzmann Equation in the Kinetic Theory of Gasses, European J. Pure Appl. Math., 15(3), 810-820, (2022).
H. M. Srivastava, Some General Families of Integral Transformations and Related Results,Appl. Math. And Comput. Sci., 6(1), 27-41, (2022).
J. Choi and P. Agarwal, A note on fractional integral operator associated with multiindexMittag-Leffler functions, Filomat, 30(7), 1931-1939, (2016).
M. K. Bansal, D. Kumar and R. Jain, A study of Marichev-Saigo-Maeda fractional integral operators associated with S-generalized Gauss hypergeometric function, Kyungpook Math J., 59(3), 433-443, (2019).
H. M. Srivastava, M. A. Chaudhry and R. P. Agarwal, The incomplete Pochhammer symbols and their applications to hypergeometric and related functions, Integral Transforms SpecFunct., 23, 659-683, (2012).
H. M. Srivastava,, M. K. Bansal and P. Harjule, A study of fractional integral operators involving a certain generalized multi-index Mittag-Leffler function, Math Meth Appl Sci., 41(16),6108-6121, (2018).
J. Singh, D. Kumar and D. Baleanu, New aspects of fractional Biswas-Milovic model with Mittag-Leffler law, Math Model Nat Phenom, 14, 303, (2019).
R.S. Ali, S. Mubeen, I. Nayab, S. Araci, G. Rahman, and K.S. Nisar, Some Fractional Operators with the Generalized Bessel-Maitland Function, Discrete Dyn. Nat. Soc, 2020, Article ID 1378457, (2020).
P. Harjule, M.K. Bansal and S. Araci, An Investigation of Incomplete H-Functions associated with some fractional integral operators, Filomat, 36(8), (2022).
M. K. Bansal, D. Kumar, K. S. Nisar, J. Singh, Certain fractional calculus and integral transform results of incomplete ℵ-functions with applications, Math Meth Appl Sci., 43, 5602-5614,(2020).
N. S¨udland, B. Baumann, T.F. Nannenmacher, Open problem: Who knows about the Alephfunction?, Appl. Anal., 1(4), 401-402, (1998).
N. S¨udland, B. Baumann, T.F. Nannenmacher, Fractional driftless Fokker-Planck equation with power law diffusion coefficients, in: V.G. Gangha, E.W. Mayr, W.G. Vorozhtsov (Eds.),Computer Algebra in Scientific Computing (CASC Konstanz 2001), Springer, Berlin, 2001,pp. 513-525.
M. K. Bansal and D. Kumar, On the integral operators pertaining to a family of incomplete I-functions, AIMS-Mathematics, 5(2), 1247-1259, (2020).
V.P. Saxena, Formal solution of certain new pair of dual integral equations involving H functions, Proc. Nat. Acad. Sci. India Sect. A, 52, 366-375,(1982).
H. M. Srivastava, R. K. Saxena and R. K. Parmar, Some Families of the Incomplete H Functions and the Incomplete  ̄H -Functions and Associated Integral Transforms and Operators of Fractional Calculus with Applications. Russ. J. Math. Phys. 25(1), 116-138, (2018).
H. M. Srivastava, K. C. Gupta and S. P. Goyal, the H-Functions of One and Two Variables with Applications, South Asian Publishers, New Delhi and Madras, 1982.