Combinatorial Interaction Testing for T-Way Test Case Generation A Scoping Review of the Perspective Features
Main Article Content
Abstract
Combinatorial t-way testing techniques aim to identify faults that arise from interactions among system components. Test case generation is a prominent area within combinatorial t-way testing, presenting challenges due to its classification as a non-deterministic polynomial-time hardness (NP-Hard) problem. Numerous t-way strategies have been proposed in the literature to generate optimal test data. While some of these strategies are optimization-based and focus on factors such as uniformity, variability, and input-output interaction strength. This paper presents a scoping review that will assess and evaluate the perspective features of the existing combinatorial t-way testing strategies from 2013 to 2023. More so, we describe t-way testing techniques, analyze existing literature, and suggest future research directions. The objective is to provide a valuable resource for researchers and practitioners involved in combinatorial t-way testing. Additionally, we present a quantitative assessment that includes an evaluation of combinatorial t-way testing strategies’ literature-based, approach-based, interaction-based characteristics, support-based, and search-based methods. Finally, we proposed potential possibilities for further exploration of combinatorial t-way testing.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
How to Cite
References
E. B. Ogunwole, J. A. Asaleye, M. I. Tabash, A. Ahmed, Y. Elsantil, and A. I. Lawal, “Debt service and information communication technology on employment and productivity: Short- and long-run implications,” Sci Afr, vol. 24, p. e02227, Jun. 2024, doi: 10.1016/J.SCIAF.2024.E02227.
H. Mamman, S. Basri, A. O. Balogun, A. A. Imam, G. Kumar, and L. F. Capretz, “Search-Based Fairness Testing: An Overview,” in 2023 IEEE International Conference on Computing, ICOCO 2023, 2023. doi: 10.1109/ICOCO59262.2023.10397906.
Z. Sun, C. Hu, C. Li, and L. Wu, “Domain ontology construction and evaluation for the entire process of software testing,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3037188.
A. Aminu Muazu, A. Sobri Hashim, A. Sarlan, and M. Abdullahi, “SCIPOG: Seeding and constraint support in IPOG strategy for combinatorial t-way testing to generate optimum test cases,” Journal of King Saud University - Computer and Information Sciences, vol. 35, no. 1, pp. 185–201, Jan. 2023, doi: 10.1016/J.JKSUCI.2022.11.010.
N. Anwar and S. Kar, “Review Paper on Various Software Testing Techniques & Strategies,” Global Journal of Computer Science and Technology., vol. 19, no. 2(1.0), 2019.
A. Aminu Muazu, A. Sobri Hashim, and A. Sarlan, “Application and Adjustment of ‘don’t care’ Values in t-way Testing Techniques for Generating an Optimal Test Suite,” Journal of Advances in Information Technology, vol. 13, no. 4, pp. 347–357, 2022, doi: 10.12720/jait.13.4.347-357.
A. A. Muazu, A. S. Hashim, A. Sarlan, and U. D. Maiwada, “Proposed Method of Seeding and Constraint in One-Parameter-At-a- Time Approach for t-way Testing,” in 2022 International Conference on Digital Transformation and Intelligence (ICDI), IEEE, Dec. 2022, pp. 39–45. doi: 10.1109/ICDI57181.2022.10007210.
S. Esfandyari and V. Rafe, “A tuned version of genetic algorithm for efficient test suite generation in interactive t-way testing strategy,” Inf Softw Technol, vol. 94, 2018, doi: 10.1016/j.infsof.2017.10.007.
E. Pira, V. Rafe, and S. Esfandyari, “A three-phase approach to improve the functionality of t-way strategy,” Soft comput, 2023, doi: 10.1007/s00500-023-08199-5.
K. M. Htay, R. R. Othman, and A. Amir, “Utilization of Gravitational Search Algorithm for Combinatorial T-Way Testing,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Mar. 2021. doi: 10.1088/1742-6596/1755/1/012007.
A. Aminu Muazu and A. Aminu Muazu, “One-parameter-at-a-time combinatorial testing strategy based on harmony search algorithm supporting mixed covering array mathematical notation (OPATHS),” in 1st International Conference on Information Technology in Education & Development (ITED), Information Technology in Education & Development (ITED), 2018, pp. 64–70.
M. A. Jamil, M. K. Nour, S. S. Alotaibi, M. J. Hussain, S. M. Hussaini, and A. Naseer, “Software Product Line Maintenance Using Multi-Objective Optimization Techniques,” Applied Sciences (Switzerland), vol. 13, no. 15, Aug. 2023, doi: 10.3390/app13159010.
A. O. Balogun et al., “Empirical Analysis of Data Sampling-Based Ensemble Methods in Software Defect Prediction,” in In book: Computational Science and Its Applications – ICCSA 2022 Workshops, Malaga, Spain., 2022, pp. 363–379. doi: 10.1007/978-3-031-10548-7_27.
S. Böhm, S. Krieter, T. Heß, T. Thüm, and M. Lochau, “Incremental Identification of T-Wise Feature Interactions,” in ACM International Conference Proceeding Series, 2024. doi: 10.1145/3634713.3634715.
R. R. Othman, K. Z. Zamli, and S. M. S. Mohamad, “T-way testing strategies: A critical survey and analysis,” International Journal of Digital Content Technology and its Applications, vol. 7, no. 9, p. 222, 2013.
A. A. Al-Sewari and K. Z. Zamli, “An orchestrated survey on T-way test case generation strategies based on optimization algorithms,” in The 8th International Conference on Robotic, Vision, Signal Processing & Power Applications., Springer Verlag, 2014, pp. 255–263. doi: 10.1007/978-981-4585-42-2_30.
S. K. Khalsa and Y. Labiche, “An Orchestrated Survey of Available Algorithms and Tools for Combinatorial Testing,” in 2014 IEEE 25th International Symposium on Software Reliability Engineering, 2014, pp. 323–334. doi: 10.1109/ISSRE.2014.15.
A. A. Alsewari, N. M. Tairan, and K. Z. Zamli, “Survey on Input Output Relation Based Combination Test Data Generation Strategies,” ARPN Journal of Engineering and Applied Sciences, vol. 10, no. 18, 2015, [Online]. Available: www.arpnjournals.com
L. P. Mudarakola and M. Padmaja, “The survey on artificial life techniques for generating the test cases for combinatorial testing,” International Journal of Research Studies in Computer Science and Engineering (IJRSCSE), vol. 2, no. 6, pp. 19–26, 2015.
H. M. Fadhil, M. N. Abdullah, and M. I. Younis, “Combinatorial Testing Approaches: A Systematic Review,” IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, vol. 22, no. 4, pp. 60–79, 2022, doi: https://doi.org/10.33103/uot.ijccce.22.4.6.
A. K. Alazzawi et al., “Recent t-way Test Generation Strategies Based on Optimization Algorithms: An Orchestrated Survey,” in International Conference on Artificial Intelligence for Smart Community: AISC 2020, 17–18 December, Universiti Teknologi Petronas, Malaysia, Springer, 2022, pp. 1055–1060.
E. La Chance and S. Hallé, “An investigation of distributed computing for combinatorial testing,” Software Testing Verification and Reliability, vol. 33, no. 4, 2023, doi: 10.1002/stvr.1842.
A. A. Muazu, A. S. Hashim, and A. Sarlan, “Review of Nature Inspired Metaheuristic Algorithm Selection for Combinatorial t-Way Testing,” IEEE Access, vol. 10, pp. 27404–27431, 2022, doi: 10.1109/ACCESS.2022.3157400.
F. Glover, “Artificial intelligence, heuristic frameworks and tabu search,” Managerial and Decision Economics, vol. 11, no. 5, pp. 365–375, 1990.
A. Rezaeipanah, F. Sarhangnia, and M. J. Abdollahi, “META-HEURISTIC APPROACH BASED ON GENETIC AND GREEDY ALGORITHMS TO SOLVE FLEXIBLE JOB-SHOP SCHEDULING PROBLEM,” Computer Science, vol. 22, no. 4, pp. 463–488, 2021, doi: 10.7494/csci.2021.22.4.4130.
S. Chakraborty, A. K. Saha, S. Nama, and S. Debnath, “COVID-19 X-ray image segmentation by modified whale optimization algorithm with population reduction,” Comput Biol Med, vol. 139, p. 104984, Dec. 2021, doi: 10.1016/J.COMPBIOMED.2021.104984.
J. Piri and P. Mohapatra, “An analytical study of modified multi-objective Harris Hawk Optimizer towards medical data feature selection,” Comput Biol Med, vol. 135, p. 104558, Aug. 2021, doi: 10.1016/J.COMPBIOMED.2021.104558.
G. I. Sayed, M. M. Soliman, and A. E. Hassanien, “A novel melanoma prediction model for imbalanced data using optimized SqueezeNet by bald eagle search optimization,” Comput Biol Med, vol. 136, p. 104712, Sep. 2021, doi: 10.1016/J.COMPBIOMED.2021.104712.
H. M. Fadhil, M. N. Abdullah, and M. I. Younis, “Innovations in t-way test creation based on a hybrid hill climbing-greedy algorithm,” IAES International Journal of Artificial Intelligence, vol. 12, no. 2, pp. 794–805, Jun. 2023, doi: 10.11591/ijai.v12.i2.pp794-805.
A. K. Alazzawi, H. M. Rais, and S. Basri, “ABCVS: An Artificial Bee Colony for Generating Variable T-Way Test Sets,” 2019. [Online]. Available: www.ijacsa.thesai.org
Y. Alkhurayyif and A. R. W. Sait, “A comprehensive survey of techniques for developing an Arabic question answering system,” PeerJ Comput Sci, vol. 9, 2023, doi: 10.7717/peerj-cs.1413.
M. Zhang, J. Sun, J. Wang, and B. Sun, “ TestSGD: Interpretable Testing of Neural Networks against Subtle Group Discrimination,” ACM Trans. Softw. Eng. Methodol., vol. 32, no. 6, Sep. 2023, doi: 10.1145/3591869.
I. Arshad, S. H. Alsamhi, and W. Afzal, “Big Data Testing Techniques: Taxonomy, Challenges and Future Trends,” Computers, Materials and Continua, vol. 74, no. 2, 2023, doi: 10.32604/cmc.2023.030266.
J. Chen, Y. Liang, Q. Shen, J. Jiang, and S. Li, “Toward Understanding Deep Learning Framework Bugs,” ACM Transactions on Software Engineering and Methodology, vol. 32, no. 6, 2023, doi: 10.1145/3587155.
S. Wang, Z. Cui, J. Xu, and B. Cui, “An Efficient Vulnerability Detection Method for 5G NAS Protocol Based on Combinatorial Testing,” in Lecture Notes on Data Engineering and Communications Technologies, vol. 193, 2024. doi: 10.1007/978-3-031-53555-0_7.
M. A. Jamil, M. K. Nour, S. S. Alotaibi, M. J. Hussain, S. M. Hussaini, and A. Naseer, “Adaptive Test Suits Generation for Self-Adaptive Systems Using SPEA2 Algorithm,” Applied Sciences, vol. 13, no. 20, p. 11324, Oct. 2023, doi: 10.3390/app132011324.
A. Bombarda and A. Gargantini, “Design, implementation, and validation of a benchmark generator for combinatorial interaction testing tools,” Journal of Systems and Software, vol. 209, 2024, doi: 10.1016/j.jss.2023.111920.
A. A. Muazu, A. S. Hashim, U. D. Maiwada, U. A. Isma’ila, M. M. Yakubu, and M. A. Ibrahim, “Pairwise test case generation with harmony search, one-parameter-at-at-time, seeding, and constraint mechanism integration,” International Journal of Electrical and Computer Engineering, vol. 14, no. 3, pp. 3137–3149, Jun. 2024, doi: 10.11591/ijece.v14i3.pp3137-3149.
M. Ahmed, A. B. Nasser, and K. Z. Zamli, “Construction of Prioritized T-Way Test Suite Using Bi-Objective Dragonfly Algorithm,” IEEE Access, vol. 10, pp. 71683–71698, 2022, doi: 10.1109/ACCESS.2022.3188856.
S. Li, Y. Song, and Y. Zhang, “Combinatorial Test Case Generation Based on ROBDD and Improved Particle Swarm Optimization Algorithm,” Applied Sciences, vol. 14, no. 2, 2024, doi: 10.3390/app14020753.
E. Pira and M. Khodizadeh-Nahari, “Combinatorial t-way test suite generation using an improved asexual reproduction optimization algorithm,” Appl Soft Comput, vol. 150, 2024, doi: 10.1016/j.asoc.2023.111070.
N. Ramli, R. R. Othman, Z. I. Abdul Khalib, and M. Jusoh, “A Review on Recent T-way Combinatorial Testing Strategy,” in MATEC Web of Conferences, EDP Sciences, Dec. 2017. doi: 10.1051/matecconf/201714001016.
K. Maung Htay, R. Razif Othman, A. Amir, and J. Mohammed Hachim Alkanaani, “Gravitational search algorithm based strategy for combinatorial t-way test suite generation,” Journal of King Saud University - Computer and Information Sciences, 2021, doi: 10.1016/j.jksuci.2021.06.020.
J. Torres-Jimenez, I. Izquierdo-Marquez, and H. Avila-George, “Methods to Construct Uniform Covering Arrays,” IEEE Access, vol. 7, 2019, doi: 10.1109/ACCESS.2019.2907057.
A. A. Muazu, A. S. Hashim, U. D. Maiwada, and A. Muppidi, “Enhanced Version of Seeding and Constraint support in IPOG strategy for Variable Strength Interaction T-way Testing,” Malaysian Journal of Computer Science, vol. 36, no. 4, 2023.
D. Gupta and A. Rana, “Fibonacci driven novel test generation strategy for constrained testing,” in Proceedings of the 2013 3rd IEEE International Advance Computing Conference, IACC 2013, 2013, pp. 1475–1478. doi: 10.1109/IAdCC.2013.6514444.
Z. H. C. Soh, S. A. C. Abdullah, and K. Z. Zamli, “A Distributed T-Way Test Suite Generation Using ‘One-Parameter-at-a-Time’ Approach,” 2013.
L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn, “ACTS: A combinatorial test generation tool,” in Proceedings - IEEE 6th International Conference on Software Testing, Verification and Validation, ICST 2013, 2013, pp. 370–375. doi: 10.1109/ICST.2013.52.
M. H. M. Zabil and K. Z. Zamli, “Implementing a t-way test generation strategy using bees algorithm,” International Journal of Advances in Soft Computing and its Applications, vol. 5, no. SPECIALISSUE.3, 2014.
K. Rabbi, Q. Mamun, and M. D. R. Islam, “An efficient particle swarm intelligence based strategy to generate optimum test data in t-way testing,” in Proceedings of the 2015 10th IEEE Conference on Industrial Electronics and Applications, ICIEA 2015, 2015. doi: 10.1109/ICIEA.2015.7334096.
A. B. Nasser, A. R. A. Alsewari, and K. Z. Zamli, “Tuning of cuckoo search based strategy for T-way testing,” ARPN Journal of Engineering and Applied Sciences, vol. 10, no. 19, 2015.
Y. A. Alsariera and K. Z. Zamli, “A Bat-inspired strategy for t-way interaction testing,” Adv Sci Lett, vol. 21, no. 7, 2015, doi: 10.1166/asl.2015.6316.
Y. A. Alsariera, H. A. S. Ahmed, H. S. Alamri, M. A. Majid, and K. Z. Zamli, “A Bat-Inspired Testing Strategy for Generating Constraints Pairwise Test Suite,” Adv Sci Lett, vol. 24, no. 10, 2018, doi: 10.1166/asl.2018.12922.
A. R. Alsewari, K. Z. Zamli, and B. Al-Kazemi, “Generating t-way test suite in the presence of constraints,” 2015.
K. Rabbi and Q. Mamun, “An effective t-way test data generation strategy,” in Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 2015. doi: 10.1007/978-3-319-28865-9_42.
A. B. Nasser, Y. A. Sariera, A. R. A. Alsewari, and K. Z. Zamli, “Assessing optimization based strategies for t-way test suite generation: The case for flower-based strategy,” in Proceedings - 5th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2015, 2016. doi: 10.1109/ICCSCE.2015.7482175.
H. L. Zakaria and K. Z. Zamli, “Migrating Birds Optimization based strategies for Pairwise testing,” in 2015 9th Malaysian Software Engineering Conference, MySEC 2015, 2016. doi: 10.1109/MySEC.2015.7475189.
H. L. Zakaria, K. Z. Zamli, and F. Din, “Hybrid Migrating Birds Optimization Strategy for t-way Test Suite Generation,” in Journal of Physics: Conference Series, 2021. doi: 10.1088/1742-6596/1830/1/012013.
K. Z. Zamli, B. Y. Alkazemi, and G. Kendall, “A Tabu Search hyper-heuristic strategy for t-way test suite generation,” Applied Soft Computing Journal, vol. 44, pp. 57–74, Jul. 2016, doi: 10.1016/j.asoc.2016.03.021.
A. K. Alazzawi, A. A. Ba Homaid, A. A. Alomoush, and A. R. A. Alsewari, “Artificial Bee Colony algorithm for pairwise test generation,” Journal of Telecommunication, Electronic and Computer Engineering, vol. 9, no. 1–2, 2017.
F. Din, A. R. A. Alsewari, and K. Z. Zamli, “A Parameter Free Choice Function Based Hyper-Heuristic Strategy for Pairwise Test Generation,” in Proceedings - 2017 IEEE International Conference on Software Quality, Reliability and Security Companion, QRS-C 2017, 2017. doi: 10.1109/QRS-C.2017.22.
B. S. Ahmed, L. M. Gambardella, W. Afzal, and K. Z. Zamli, “Handling constraints in combinatorial interaction testing in the presence of multi objective particle swarm and multithreading,” Inf Softw Technol, vol. 86, 2017, doi: 10.1016/j.infsof.2017.02.004.
A. B. Nasser, K. Z. Zamli, A. R. A. Alsewari, and B. S. Ahmed, “Hybrid flower pollination algorithm strategies for t-way test suite generation,” PLoS One, vol. 13, no. 5, May 2018, doi: 10.1371/journal.pone.0195187.
A. Aminu Muazu and A. Aminu Muazu, “Design of a harmony search algorithm based on covering array t-way testing strategy.,” in 1st International Conference on Information Technology in Education & Development (ITED), Information Technology in Education & Development (ITED), 2018, pp. 33–38.
A. Alsewari and K. Z. Zamli, “Design and implementation of a harmony-search-based variable-strength t-way testing strategy with constraints support,” Inf Softw Technol, vol. 54, no. 6, pp. 553–568, Jun. 2012, doi: 10.1016/j.infsof.2012.01.002.
A. B. Nasser, A. Alsewari, and K. Z. Zamli, “Learning cuckoo search strategy for t-way test generation,” in Communications in Computer and Information Science, Springer Verlag, 2018, pp. 97–110. doi: 10.1007/978-981-13-0755-3_8.
K. Rabbi, Q. Mamun, and M. R. Islam, “A novel swarm intelligence based strategy to generate optimum test data in T-Way testing,” in Advances in Intelligent Systems and Computing, 2018. doi: 10.1007/978-3-319-67071-3_31.
A. Alsewari, A. A. Mu’aza, T. H. Rassem, N. M. Tairan, H. Shah, and K. Z. Zamli, “One-Parameter-at-a-Time Combinatorial Testing Strategy Based on Harmony Search Algorithm OPAT-HS,” Adv Sci Lett, vol. 24, no. 10, 2018, doi: 10.1166/asl.2018.12927.
A. AbdulRahman, L. M. Xuan, and K. Z. Zamli, “Firefly combinatorial testing strategy,” in Advances in Intelligent Systems and Computing, 2019. doi: 10.1007/978-3-030-01174-1_72.
A. M. Saleh, R. R. Othman, Y. M. Yacob, and J. M. Alkanaani, “Parameters tuning of adaptive firefly algorithm based strategy for t-way testing,” International Journal of Innovative Technology and Exploring Engineering, vol. 9, no. 1, 2019, doi: 10.35940/ijitee.A6111.119119.
P. Ramgouda and V. Chandraprakash, “Constraints handling in combinatorial interaction testing using multi-objective crow search and fruitfly optimization,” Soft comput, vol. 23, no. 8, 2019, doi: 10.1007/s00500-019-03795-w.
F. Din and K. Z. Zamli, “Pairwise test suite generation using adaptive teaching learning-based optimization algorithm with remedial operator,” in Advances in Intelligent Systems and Computing, 2019. doi: 10.1007/978-3-319-99007-1_18.
M. Lakshmi Prasad, A. Raja Sekhar Reddy, and J. K. R. Sastry, “GAPSO: Optimal test set generator for pairwise testing,” Int J Eng Adv Technol, vol. 8, no. 6, 2019, doi: 10.35940/ijeat.F8645.088619.
A. R. A. Alsewari, R. Poston, K. Z. Zamli, M. Balfaqih, and K. S. Aloufi, “Combinatorial test list generation based on Harmony Search Algorithm,” J Ambient Intell Humaniz Comput, 2020, doi: 10.1007/s12652-020-01696-7.
A. B. Nasser, F. Hujainah, A. A. Al-Sewari, and K. Z. Zamli, “An improved jaya algorithm-based strategy for t-way test suite generation,” in Advances in Intelligent Systems and Computing, 2020. doi: 10.1007/978-3-030-33582-3_34.
A. A. Hassan, S. Abdullah, K. Z. Zamli, and R. Razali, “Combinatorial test suites generation strategy utilizing the whale optimization algorithm,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3032851.
A. B. Nasser, A. S. H. Abdul-Qawy, N. Abdullah, F. Hujainah, K. Z. Zamli, and W. A. H. M. Ghanem, “Latin Hypercube Sampling Jaya Algorithm based Strategy for T-way Test Suite Generation,” in ACM International Conference Proceeding Series, 2020. doi: 10.1145/3384544.3384608.
A. Aminu Muazu and U. D. Maiwada, “PWiseHA: Application of Harmony Search Algorithm for Test Suites Generation using Pairwise Techniques,” International Journal of Computer and Information Technology, vol. 9, no. 4, pp. 2279–0764, 2020, [Online]. Available: www.ijcit.com
M. S. A. Rashid Ali, R. R. Othman, Z. R. Yahya, and M. Z. Zahir, “A Modified Artificial Bee Colony Based Test Suite Generation Strategy for Uniform T-Way Testing,” in IOP Conference Series: Materials Science and Engineering, 2020. doi: 10.1088/1757-899X/767/1/012020.
A. B. Nasser, K. Z. Zamli, N. W. B. M. Nasir, W. A. H. M. Ghanem, and F. Din, “T-way Test Suite Generation Based on Hybrid Flower Pollination Algorithm and Hill Climbing,” in ACM International Conference Proceeding Series, 2021. doi: 10.1145/3457784.3457822.
K. M. Htay, R. R. Othman, A. Amir, H. L. Zakaria, and N. Ramli, “A Pairwise T-Way Test Suite Generation Strategy Using Gravitational Search Algorithm,” in ICAICST 2021 - 2021 International Conference on Artificial Intelligence and Computer Science Technology, 2021. doi: 10.1109/ICAICST53116.2021.9497823.
H. N. Nsaif and D. Norhayati Abang Jawawi, “Binary Black Hole-Based Optimization for T-Way Testing,” in IOP Conference Series: Materials Science and Engineering, 2020. doi: 10.1088/1757-899X/864/1/012073.
C. Luo et al., “AutoCCAG: An Automated Approach to Constrained Covering Array Generation,” in IEEE/ACM 43rd International Conference on Software Engineering (ICSE), Institute of Electrical and Electronics Engineers (IEEE), May 2021, pp. 201–212. doi: 10.1109/icse43902.2021.00030.
Y. A. Alsariera, Y. Sanjalawe, A. H. Al Omari, M. A. Albawaleez, Y. K. Sanjalawe, and K. Z. Zamli, “Hybridized BA & PSO t-way Algorithm for Test Case Generation Cloud Computing Security View project Detection DDoS attack approaches against SDN View project Hybridized BA & PSO t-way Algorithm for Test Case Generation,” IJCSNS International Journal of Computer Science and Network Security, vol. 21, no. 10, p. 343, 2021, doi: 10.22937/IJCSNS.2021.21.10.48.
H. M. Fadhil, M. N. Abdullah, and M. I. Younis, “TWGH: A Tripartite Whale–Gray Wolf–Harmony Algorithm to Minimize Combinatorial Test Suite Problem,” Electronics (Switzerland), vol. 11, no. 18, 2022, doi: 10.3390/electronics11182885.
J. B. Odili, A. B. Nasser, A. Noraziah, M. H. A. Wahab, and M. Ahmed, “African Buffalo Optimization Algorithm Based T-Way Test Suite Generation Strategy for Electronic-Payment Transactions,” in Lecture Notes in Networks and Systems, 2022. doi: 10.1007/978-3-030-82616-1_15.
Rozmie R. Othman, Norazlina Khamis, and Kamal Z.Zamli, “Variable Strength T Way Test Suite Generator with Constraints Support,” Malaysian Journal of Computer Science, vol. 27, no. 3, 2014.
S. A. C. Abdullah, Z. H. C. Soh, and K. Z. Zamli, “Variable-strength interaction for t-way test generation strategy,” International Journal of Advances in Soft Computing and its Applications, vol. 5, no. SPECIALISSUE.3, 2014.
K. Z. Zamli, F. Din, S. Baharom, and B. S. Ahmed, “Fuzzy adaptive teaching learning-based optimization strategy for the problem of generating mixed strength t-way test suites,” Eng Appl Artif Intell, vol. 59, pp. 35–50, Mar. 2017, doi: 10.1016/J.ENGAPPAI.2016.12.014.
A. B. Nasser and K. Z. Zamli, “A new variable strength t-way strategy based on the cuckoo search algorithm,” in Lecture Notes in Networks and Systems, vol. 67, 2019. doi: 10.1007/978-981-13-6031-2_17.
A. A. B. A. Homaid, A. R. A. Alsewari, K. Z. Zamli, and Y. A. Alsariera, “Adapting the elitism on greedy algorithm for variable strength combinatorial test cases generation,” IET Software, vol. 13, no. 4, pp. 286–294, Aug. 2019, doi: 10.1049/iet-sen.2018.5005.
N. Ramli, R. R. Othman, Z. I. A. Khalib, M. Z. Z. Ahmad, and S. S. M. Fauzi, “Ant colony algorithm to generate t-way test suite with constraints,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Jun. 2020. doi: 10.1088/1742-6596/1529/4/042103.
J. M. Altmemi, R. R. Othman, and R. Ahmad, “SCAVS: Implement Sine Cosine Algorithm for generating Variable t-way test suite,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd, Sep. 2020. doi: 10.1088/1757-899X/917/1/012011.
A. K. Alazzawi and S. Basri, “HABC: Hybrid artificial bee colony for generating variable t-way test sets,” 2020.
M. Younis, “GAMIPOG: A Deterministic Genetic Multi-Parameter-Order Strategy for the Generation of Variable Strength Covering Arrays,” 2020. [Online]. Available: https://www.researchgate.net/publication/344599430
A. K. Alazzawi et al., “HABCSm: A Hamming Based t -way Strategy based on Hybrid Artificial Bee Colony for Variable Strength Test Sets Generation,” International Journal of Computers, Communications and Control, vol. 16, no. 5, 2021, doi: 10.15837/ijccc.2021.5.4308.
N. Ramli, R. R. Othman, R. Hendradi, and I. Iszaidy, “T-way Test Suite Generation Strategy based on Ant Colony Algorithm to Support T-way Variable Strength,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Mar. 2021. doi: 10.1088/1742-6596/1755/1/012034.
M. Z. Zahir Ahmad, R. R. Othman, N. Ramli, and M. S. A. Rashid Ali, “VS-TACO: A Tuned Version of Ant Colony Optimization for Generating Variable Strength Interaction in T-Way Testing Strategy,” in ACM International Conference Proceeding Series, Association for Computing Machinery, Feb. 2022, pp. 48–54. doi: 10.1145/3524304.3524311.
M. I. Younis, A. R. A. Alsewari, N. Y. Khang, and K. Z. Zamli, “CTJ: Input-output based relation combinatorial testing strategy using jaya algorithm,” Baghdad Science Journal, vol. 17, no. 3, pp. 1002–1009, Sep. 2020, doi: 10.21123/BSJ.2020.17.3(SUPPL.).1002.
A. S. M. Ali, R. R. Othman, Y. M. Yacob, and H. S. A. Ben Abdelmula, “An Efficient Combinatorial Input Output-Based Using Adaptive Firefly Algorithm with Elitism Relations Testing,” Advances in Science, Technology and Engineering Systems Journal, vol. 6, no. 4, pp. 223–232, Jul. 2021, doi: 10.25046/aj060426.
R. N. Pagani, J. L. Kovaleski, and L. M. Resende, “Methodi Ordinatio: a proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication,” Scientometrics, vol. 105, no. 3, 2015, doi: 10.1007/s11192-015-1744-x.
J. M. Sharif, K. Z. Zamli, A. A. Bakar, S. Abdullah, I. S. Isa, and I. R. M. Noordin, “A non-deterministic T-way strategy with seeding and constraints support,” in SHUSER 2012 - 2012 IEEE Symposium on Humanities, Science and Engineering Research, 2012. doi: 10.1109/SHUSER.2012.6268795.