A Review Evapotranspiration Estimation Models, Techniques and Methods State of Art
Main Article Content
Abstract
Evapotranspiration (ET) plays a critical role in the global water cycle, significantly impacting water budgets, climate dynamics, and agricultural systems. This complex process results from interactions among the atmosphere, soil, and plants, involving both chemical and biological processes such as photosynthesis and CO₂ emissions, alongside the physical transformation of water between liquid and vapour phases. Due to these interactions, estimating ET accurately remains challenging, particularly in simulating and integrating all associated processes within a single model. ET can be measured with physical devices, like eddy covariance systems and lysimeters, or estimated using physical models and equations informed by measurements, remote sensing data, or a combination of these sources. This paper provides a comprehensive review of the theoretical foundations of ET estimation, observing techniques, and algorithms for estimating ET across diverse landscapes using remotely sensed data. It also addresses the uncertainties and limitations of current estimation methods, reviewing the strengths and constraints of various approaches. Additionally, this paper evaluates existing ET remote sensing products, examining the foundational equations and methods behind their development. Finally, recommendations are offered to enhance future ET estimations, including combining multiple methods to improve the accuracy and reliability of ET flux assessments across varied environments.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
How to Cite
References
WMO, W. M. (1966). Measurement and Estimation of Evaporation and Evapotranspiration. Tech Pap (CIMO-Rep) 83, WMO, Genf.
A. J. Teuling, M. H. (2009). A regional perspective on trends in continental evaporation. GEOPHYSICAL RESEARCH LETTERS, 36.
Abebe D. Chukalla, M. L. (2021). A Framework for Irrigation Performance Assessment Using WaPOR data: The case of a Sugarcane Estate in Mozambique. Hydrology and Earth System Sciences.
Albrecht, F. (1950). Die Methodenzur Bestimmung der Verdunstungdernaturlichen Erdoberflache. [Evaporation Estimation Methods for Natural Earth’s Surface.]. Arch Meteor Geoph. BioklSer, 1-38.
Allen, R., et al. (1998). Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements. Rome, Italy: FAO—Food and Agriculture Organization of the United Nations.
B. Abbott et al. (2019). Human domination of the global water cycle absent from depictions and perceptions. Nature Geoscience, pp. 533-540.
Blatchford, M. L. (2020). Evaluation of WaPOR V2 evapotranspiration products across Africa. WILEY.
Brockamp, B. a. (1963). Verdunstungsmessungen auf den Steiner See bei Munster. [Evaporation Measurements on the Steiner Lake at Munster.]. Deutsche gewässerkundliche Mitteilungen, 149-154.
Dalton, J. (1802). Experimental Essays on the Constitution of Mixed Gases: On the Force of Steam or Vapour from Water or Other Liquids in Different Temperatures, Both in a Torricelli Vacuum and in Air; on Evaporation; and on Expansion of Gases by Heat. Memoirs of the Literary and Philosophical Society of Manchester, 536-602.
FAO, IHE-Delft, IWMI. (2019, June). Retrieved from The FAO portal to monitor WAter Productivity through Open access of Remotely sensed derived data: https://wapor.apps.fao.org/home/WAPOR_2/1
Ghiat, I., et. al. (2021, 9 15). A Review of Evapotranspiration Measurement Models, Techniques and Methods for Open and Closed Agricultural Field Applications. Water, 13, 2523. Retrieved from https://www.mdpi.com/2073-4441/13/18/2523
Helen A. Cleugh, R. L. (2007). Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 285–304.
J. Overgaard, D. R. (2006). Land-surface modelling in hydrological perspective – a review. Biogeosciences, 3, 229–241.
Jung, M. M. (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. nature, 951-954.
K. Wang et al. (2012). A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics.
Kevin E. Trenberth, J. T. (2009). Earth's Global Energy Budget. 311–324.
Mahringer, W. (1970). Verdunstungsstudien am Neusiedler See. [Evaporation Studies at Lake Neusiedl.]. Arch Met GeophBioklSer, 1-20.
Meyer, A. (1926). Uber einige Zusammenha ngezwischen Klima und Boden in Europa. [Some Interrelations between Climate and Soil in Europe.]. Chemie der Erde, 209-347.
Monteith, J. L. (1965). EVAPORATION AND ENVIRONMENT. Symposia of the Society for Experimental Biology, 205-234.
Pamela L.Naglera, J. E. (2005). Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sensing of Environment, 94, 17-30.
Penman, H. (1948). Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of the Royal Society of London, 120-145.
Qiaozhen Mu, F. A. (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 519–536.
R. Allan et al. (2020). Advances in understanding large-scale responses of the water cycle to climate change. Annals of the New York Academy of Sciences, pp. 40-75.
Richard G. Allan, L. S. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Researchgate.
Richard G. Allen, L. S. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. In F. -F. Nations, Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. FAO.
Richard G. Allen, M. T. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration „METRIC…—Model. Journal of Irrigation and Drainage Engineering, 33, 395-406.
Rohwer, C. (1931). Evaporation from Free Water Surfaces. US Department of Agriculture, Washington DC.
Su, Z. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, The Su.
Trabert, W. (1896). Neue Beobachtungenûber Verdampfungsgeschwindigkeiten. [New Observations on Evaporation Rates.]. Meteorologische Zeitschrift, 261-263.
W.G.M. BASTIAANSSEN, H. P. (2012). ETLook: a novel continental evapotranspiration algorithm. Wyoming, USA: IAHS Publ. 3XX, 2011.
W.G.M.Bastiaanssen, H. Y. (1998). A remote sensing surface energy balance algorithm for land (SEBAL).: Part 2: Validation. Journal of Hydrology, 213-229.
W.G.M.Bastiaanssena, M. R. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology, 198-212.
William Kustas, M. A. (2009). Advances in thermal infrared remote sensing for land surface modeling. Agricultural and Forest Meteorology, 149, 2071–2081.
Xiang, Keyu, et al. (2020). Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review. Agricultural Water Management, 232.
Prenger, J.; Fynn, R.; Hansen, R. A comparison of four evapotranspiration models in a greenhouse environment. Trans. ASAE 2002, 45, 1779.
López-Cruz, I.L.; Olivera-López, M.; Herrera-Ruiz, G. Simulation of greenhouse tomato crop transpiration by tow theoretical models. Acta Hortic. 2008, 145–150.
Villarreal-Guerrero, F.; Kacira, M.; Fitz-Rodríguez, E.; Kubota, C.; Giacomelli, G.A.; Linker, R.; Arbel, A. Comparison of three evapotranspiration models for a greenhouse cooling strategy with natural ventilation and variable high pressure fogging. Sci. Hortic. 2012, 134, 210–221.
Gharsallah, O.; Facchi, A.; Gandolfi, C. Comparison of six evapotranspiration models for a surface irrigated maize agro-ecosystem in Northern Italy. Agric. Water Manag. 2013, 130, 119–130.
Ngongondo, C.; Xu, C.-Y.; Tallaksen, L.M.; Alemaw, B. Evaluation of the FAO Penman–Montheith, Priestley–Taylor and Hargreaves models for estimating reference evapotranspiration in southern Malawi. Hydrol. Res. 2013, 44, 706–722.
Kan, G.; Zhang, M.; Liang, K.; Wang, H.; Jiang, Y.; Li, J.; Ding, L.; He, X.; Hong, Y.; Zuo, D.; et al. Improving water quantity simulation & forecasting to solve the energy-water-food nexus issue by using heterogeneous computing accelerated global optimization method. Appl. Energy 2018, 210, 420–433.
Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy 2011, 39, 7896–7906.
FAO. Water for Sustainable Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017.
Lahlou, F.; Namany, S.; Mackey, H.R.; Al-Ansari, T. Treated Industrial Wastewater as a Water and Nutrients Source for Tomatoes Cultivation: An Optimisation Approach. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2020; Volume 48, pp. 1819–1824.
Li, S.X.; Wang, Z.H.; Malhi, S.S.; Li, S.Q.; Gao, Y.J.; Tian, X.H. Chapter 7 Nutrient and Water Management Effects on Crop Production, and Nutrient and Water Use Efficiency in Dryland Areas of China. In Advances in Agronomy; Elsevier Inc.: Amsterdam, The Netherlands, 2009; Volume 102, pp. 223–265. ISBN 9780123748188.
Slowik, K.; Labanauskas, C.K.; Stolzy, L.H.; Zentmyer, G.A. Influence of Rootstocks, Soil Oxygen, and Soil Moisture on the Uptake and Translocation of Nutrients in Young Avocado 1. J. Amer. Soc. Hort. Sci. 1979, 104, 172–175.
Labanauskas, C.K.; Stolzy, L.H.; Zentmyer, G.A. Rootstock, Soil Oxygen, and Soil Moisture Effects on Growth and Concentration of Nutrients in Avocado Plants. Calif. Avocado Soc. Yearb. 1978, 62, 118–125.
Labanauskas, C.K.; Baines, R.C.; Stolzy, L.H. Effects of citrus nematod (Tylenchulus Semipenetrans) and two levels of water suction on nutrient concentrationcs in navel orange leaves and roots. Soil Sci. 1965, 99, 367–374.
Still, C.J.; Sibley, A.; Page, G.; Meinzer, F.C.; Sevanto, S. When a cuvette is not a canopy: A caution about measuring leaf temperature during gas exchange measurements. Agric. For. Meteorol. 2019, 279, 107737.
Yu, L.; Wang, W.; Zhang, X.; Zheng, W. A Review on Leaf Temperature Sensor: Measurement Methods and Application. In Computer and Computing Technologies in Agriculture IX; Li, D., Li, Z., Eds.; Springer: Cham, Switzerland, 2016; Volume 478, pp. 216–230.
Tarnopolsky, M.; Seginer, I. Leaf temperature error from heat conduction along thermocouple wires. Agric. For. Meteorol. 1999, 93, 185–194.
Tanny, J. Microclimate and evapotranspiration of crops covered by agricultural screens: A review. Biosyst. Eng. 2013, 114, 26–43.
Stanhill, G. Evapotranspiration. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019.
Hu, X.; Shi, L.; Lin, G.; Lin, L. Comparison of physical-based, data-driven and hybrid modeling approaches for evapotranspiration estimation. J. Hydrol. 2021, 601, 126592.