Some Open-Newton-Cotes Type Integral inequalities for Caputo Fractional Integral Operator

Main Article Content

Sonia Sharma
https://orcid.org/0009-0009-9046-6317
Harish Nagar
https://orcid.org/0000-0002-8159-7835

Abstract

In this paper, we present a set of open-Newton-type inequalities with n=1 for differentiable convex functions using the Caputo fractional operator. For this, first we prove an integral identity using Caputo Fractional integral and derivative operator. Further, by utilising this identity we establish some error bounds for Open-Newton-Cotes formula for differentiable convex functions and bounded functions in the fractional calculus. Finally, we added some examples and show the validity of inequalities with a graph for different values of fractional parameter .

Article Details

How to Cite
Sharma, S., & Nagar, H. (2025). Some Open-Newton-Cotes Type Integral inequalities for Caputo Fractional Integral Operator. Zhongguo Kuangye Daxue Xuebao, 30(3), 20-32. https://zkdx.ch/journal/zkdx/article/view/349
Section
Articles

How to Cite

Sharma, S., & Nagar, H. (2025). Some Open-Newton-Cotes Type Integral inequalities for Caputo Fractional Integral Operator. Zhongguo Kuangye Daxue Xuebao, 30(3), 20-32. https://zkdx.ch/journal/zkdx/article/view/349

References

Noor, M. A., Noor, K. I., & Iftikhary, S. (2016). Some Newton's type inequalities for harmonic convex functions. Journal of Advanced Mathematical Studies, 9(1).

Noor, M. A., Noor, K. I., & Iftikhar, S. (2018). Newton inequalities for p-harmonic convex functions. Honam Mathematical Journal, 40(2), 239–250.

Luangboon, W., Nonlaopon, K., Tariboon, J., & Ntouyas, S. K. (2021). Simpson- and Newton-type inequalities for convex functions via (p, q)-calculus. Mathematics, 9(12), 1338.

Ali, M. A., Budak, H., & Zhang, Z. (2022). A new extension of quantum Simpson's and quantum Newton's type inequalities for quantum differentiable convex functions. Mathematical Methods in the Applied Sciences, 45(4), 1845–1863.

Iftikhar, S., Erden, S., Ali, M. A., Baili, J., & Ahmad, H. (2022). Simpson’s second-type inequalities for coordinated convex functions and applications for cubature formulas. Fractal and Fractional, 6(1), 33.

Kumar, S., & Gupta, V. (2024). Collocation method with Lagrange polynomials for variable‐order time‐fractional advection–diffusion problems. Mathematical Methods in the Applied Sciences, 47(2), 1113–1131.

Kassymov, A., Ragusa, M. A., Ruzhansky, M., & Suragan, D. (2023). Stein-Weiss-Adams inequality on Morrey spaces. Journal of Functional Analysis, 285(11), 110152.

Emin, Ö. M., Butt, S. I., Ekinci, A., & Nadeem, M. (2023). Several new integral inequalities via Caputo fractional integral operators. Filomat, 37(6), 1843–1854.

Hardy, G. H., Littlewood, J. E., & Pólya, G. (1952). Inequalities. Cambridge University Press.

Mitrinovic, D. S., & Vasic, P. M. (1970). Analytic inequalities. Springer Verlag.

Pachpatte, B. G. (2005). Mathematical inequalities. Elsevier.

Anastassiou, G. A., & Argyros, I. K. (2015). Newton-type methods on generalized Banach spaces and applications in fractional calculus. Algorithms, 8(4), 832–849.

Munira, A., Budak, H., Faiz, I., & Qaisar, S. (2024). Generalizations of Simpson type inequality for (α, m)-convex functions. Filomat, 38(10), 3295–3312.

Sarikaya, M. Z., Set, E., & Ozdemir, M. E. (2010). On new inequalities of Simpson’s type for s-convex functions. Computers and Mathematics with Applications, 60(8), 2191–2199.

Hussain, S., Khalid, J., & Chu, Y. M. (2020). Some generalized fractional integral Simpson’s type inequalities with applications. AIMS Mathematics, 5(6), 5859–5883.

Kashuri, A., Mohammed, P. O., Abdeljawad, T., Hamasalh, F., & Chu, Y. (2020). New Simpson type integral inequalities for s‐convex functions and their applications. Mathematical Problems in Engineering, 2020, 8871988.

Dragomir, S. S., & Agarwal, R. (1998). Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Applied Mathematics Letters, 11, 91–95.

Kirmaci, U. S. (2004). Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula. Applied Mathematics and Computation, 147, 137–146.

Erden, S., Iftikhar, S., Delavar, M. R., Kumam, P., Thounthong, P., & Kumam, W. (2020). On generalizations of some inequalities for convex functions via quantum integrals. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 114, 1–15.

Iftikhar, S., Kumam, P., & Erden, S. (2020). Newton’s-type integral inequalities via local fractional integrals. Fractals, 28, 2050037.

Sitthiwirattham, T., Nonlaopon, K., Ali, M. A., & Budak, H. (2022). Riemann–Liouville fractional Newton’s-type inequalities for differentiable convex functions. Fractal and Fractional, 6, 175.

Soontharanon, J., Ali, M. A., Budak, H., Kosem, P., Nonlaopon, K., & Sitthiwirattham, T. (2022). Some new generalized fractional Newton’s-type inequalities for convex functions. Journal of Function Spaces, 2022, Article ID 2529523.

Li, Y. M., Rashid, S., Hammouch, Z., Baleanu, D., & Chu, Y.-M. (2021). New Newton’s-type estimates pertaining to local fractional integral via generalized p-convexity with applications. Fractals, 29, 2140018.

Booth, A. D. (1966). Numerical methods (3rd ed.). Butterworths.

Meftah, B., & Allel, N. (2022). Maclaurin’s inequalities for functions whose first derivatives are preinvex. Journal of Mathematical Analysis and Modeling, 3, 52–64.

Sarikaya, M. Z., Set, E., Yaldiz, H., & Başak, N. (2013). Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Mathematical and Computer Modelling, 57, 2403–2407.

Set, E. (2012). New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Computers and Mathematics with Applications, 63, 1147–1154.

Iscan, I., & Wu, S. (2014). Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Applied Mathematics and Computation, 238, 237–244.

Sitthiwirattham, T., Nonlaopon, K., Ali, M. A., & Budak, H. (2022). Riemann–Liouville fractional Newton’s-type inequalities for differentiable convex functions. Fractal and Fractional, 6, Article 175.

Awan, M. U., Talib, S., Chu, Y. M., Noor, M. A., & Noor, K. I. (2020). Some new refinements of Hermite–Hadamard-type inequalities involving Riemann–Liouville fractional integrals and applications. Mathematical Problems in Engineering, 2020, 3051920.

Kashuri, A., & Liko, R. (2020). Generalized trapezoidal type integral inequalities and their applications. Journal of Analysis, 28, 1023–1043.

Khan, M. A., Iqbal, A., Suleman, M., & Chu, Y. M. (2018). Hermite–Hadamard type inequalities for fractional integrals via Green’s function. Journal of Inequalities and Applications, 2018, Article 1.

Khan, M. A., Ali, T., Dragomir, S. S., & Sarikaya, M. Z. (2018). Hermite–Hadamard type inequalities for conformable fractional integrals. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 112, 1033–1048.

Set, E., Choi, J., & Gözpinar, A. (2017). Hermite–Hadamard type inequalities for the generalized k-fractional integral operators. Journal of Inequalities and Applications, 2017, Article 1.

Tunc, M. (2013). On new inequalities for h-convex functions via Riemann–Liouville fractional integration. Filomat, 27, 559–565.

Vivas-Cortez, M., Ali, M. A., Kashuri, A., & Budak, H. (2021). Generalizations of fractional Hermite–Hadamard–Mercer-like inequalities for convex functions. AIMS Mathematics, 6, 9397–9421.

Zhao, D., Ali, M. A., Kashuri, A., Budak, H., & Sarikaya, M. Z. (2020). Hermite–Hadamard-type inequalities for the interval-valued approximately h-convex functions via generalized fractional integrals. Journal of Inequalities and Applications, 2020, Article 1.

Sitthiwirattham, T., Ali, M. A., Budak, H., & Promsakon, C. (n.d.). Some open-Newton–Cotes type inequalities for convex functions in fractional calculus. [Unpublished or in press].

Burden, R. L., & Faires, J. D. (2015). Numerical analysis (9th ed.). Cengage Learning.

Peajcariaac, J. E., & Tong, Y. L. (1992). Convex functions, partial orderings, and statistical applications. Academic Press.

Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations (Vol. 204). Elsevier.

Gorenflo, R., & Mainardi, F. (2000). Essentials of fractional calculus. Maphysto Center.

Euler, L. (1999). On transcendental progressions that is, those whose general terms cannot be given algebraically. Commentarii Academiae Scientiarum Petropolitanae, 1738(5), 36–57.

Mahajan, Y., & Nagar, H. (2025). Fractional Newton‐type integral inequalities for the Caputo fractional operator. Mathematical Methods in the Applied Sciences, 48(4), 5244–5254.

Similar Articles

You may also start an advanced similarity search for this article.