Energy Storage Solutions for Enhanced Performance in Off-Grid Solar Systems in Abuja, Nigeria
Main Article Content
Abstract
Over the past decade, there has been a discernible increase in the need for energy, mainly due to the widespread expansion of the industrial sector and population development. Nigeria needs a lot of energy resources to be sustainable because of its large population. As a result, there is now a significant reliance on natural gas and crude oil for energy, which makes us vulnerable to shortages of these supplies. This dependence has negative effects on the country's economy and climate change. In light of these difficulties and the limited supply of fossil fuels as well as its negative effects on the environment, there is a global movement to use sustainable energy resources and technologies to meet the increased demand for energy. In the field of renewable energy technology, solar photovoltaic (PV) systems have become a viable option. An enduring, sustainable, and environmentally beneficial energy source for the future is offered by these systems, which directly harvest solar radiation from the sun to create electricity. Photovoltaic devices are a suitable sustainable energy alternative because of their ecological and economic advantages. This makes them compatible with international initiatives such as Sustainable Development Goal 7 (SDG-7), which aims to guarantee that everyone has access to modern, affordable, dependable, and sustainable energy. In particular, this study explores whether it would be feasible to install an off-grid photovoltaic system in Abuja, Nigeria, which is located at latitude 9°03'28" N and longitude 7°29'20" E, to meet the electrical needs of a residential building. The inquiry investigates the PV system's total capacity to meet residential power consumption, using a mathematical modeling methodology for both design and analysis. The results obtained from the use of mathematical modeling methodology indicate that ten MLE275HD2 PV modules, with a capacity of 285 Wp apiece, when combined with five 100 Ah batteries, can effectively handle a requirement for electricity throughout the year of about 3123 kWh.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
How to Cite
References
O. B. Adewuyi, M. K. Kiptoo, A. F. Afolayan, T. Amara, O. I. Alawode, and T. Senjyu, “Challenges and prospects of Nigeria’s sustainable energy transition with lessons from other countries’ experiences,” Energy Reports, vol. 6, pp. 993–1009, 2020, doi: 10.1016/j.egyr.2020.04.022.
Y. N. Chanchangi, F. Adu, A. Ghosh, S. Sundaram, and T. K. Mallick, Nigeria’s energy review: Focusing on solar energy potential and penetration, vol. 25, no. 7. Springer Netherlands, 2023. doi: 10.1007/s10668-022-02308-4.
L. Huang, J. Kang, M. Wan, L. Fang, C. Zhang, and Z. Zeng, “Solar Radiation Prediction Using Different Machine Learning Algorithms and Implications for Extreme Climate Events,” Front. Earth Sci., vol. 9, no. April, pp. 1–17, 2021, doi: 10.3389/feart.2021.596860.
B. Ghorbani, A. Ebrahimi, M. Moradi, and M. Ziabasharhagh, “Energy, exergy and sensitivity analyses of a novel hybrid structure for generation of Bio-Liquefied natural Gas, desalinated water and power using solar photovoltaic and geothermal source,” Energy Convers. Manag., vol. 222, no. July, p. 113215, 2020, doi: 10.1016/j.enconman.2020.113215.
K. Obaideen et al., “Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs),” Sustainability, vol. 15, no. 2, p. 1418, 2023, doi: 10.3390/su15021418.
A. S. Oladeji, O. S. Balogun, and S. O. Aliyu, “Use of standalone photovoltaic system for office building: the case study of national centre for hydropower research and development, Nigeria,” Niger. J. Technol., vol. 36, no. 4, p. 1208, 2018, doi: 10.4314/njt.v36i4.30.
V. Kizilcec, T. Perros, I. Bisaga, and P. Parikh, “Comparing adoption determinants of solar home systems, LPG and electric cooking for holistic energy services in Sub-Saharan Africa,” Environ. Res. Commun., vol. 4, no. 7, 2022, doi: 10.1088/2515-7620/ac7f23.
H. Ao Xuan, V. Vu Trinh, K. Techato, and K. Phoungthong, “Use of hybrid MCDM methods for site location of solar-powered hydrogen production plants in Uzbekistan,” Sustain. Energy Technol. Assessments, vol. 52, no. PA, p. 101979, 2022, doi: 10.1016/j.seta.2022.101979.
Y. Gao et al., “No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title,” Aleph, vol. 87, no. 1,2, pp. 149–200, 2023, [Online]. Available: https://repositorio.ufsc.br/xmlui/bitstream/handle/123456789/167638/341506.pdf?sequence=1&isAllowed=y%0Ahttps://repositorio.ufsm.br/bitstream/handle/1/8314/LOEBLEIN%2C LUCINEIA CARLA.pdf?sequence=1&isAllowed=y%0Ahttps://antigo.mdr.gov.br/saneamento/proees
C. Lamnatou, R. Vaillon, S. Parola, and D. Chemisana, “Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures,” Renew. Sustain. Energy Rev., vol. 137, no. November 2020, p. 110625, 2021, doi: 10.1016/j.rser.2020.110625.
E. I. Come Zebra, H. J. van der Windt, G. Nhumaio, and A. P. C. Faaij, “A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries,” Renew. Sustain. Energy Rev., vol. 144, no. March, 2021, doi: 10.1016/j.rser.2021.111036.
A. A. A. Gassar and S. H. Cha, “Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales,” Appl. Energy, vol. 291, no. January, p. 116817, 2021, doi: 10.1016/j.apenergy.2021.116817.
E. P. Agbo, C. O. Edet, T. O. Magu, A. O. Njok, C. M. Ekpo, and H. Louis, “Solar energy: A panacea for the electricity generation crisis in Nigeria,” Heliyon, vol. 7, no. 5, p. e07016, 2021, doi: 10.1016/j.heliyon.2021.e07016.
H. Azad Gilani and S. Hoseinzadeh, “Techno-economic study of compound parabolic collector in solar water heating system in the northern hemisphere,” Appl. Therm. Eng., vol. 190, no. November 2020, p. 116756, 2021, doi: 10.1016/j.applthermaleng.2021.116756.
G. E. Akpan and U. F. Akpan, “Electricity consumption, carbon emissions and economic growth in Nigeria,” Int. J. Energy Econ. Policy, vol. 2, no. 4, pp. 292–306, 2012.
C. Ammari, D. Belatrache, B. Touhami, and S. Makhloufi, “Sizing, optimization, control and energy management of hybrid renewable energy system—A review,” Energy Built Environ., vol. 3, no. 4, pp. 399–411, 2022, doi: 10.1016/j.enbenv.2021.04.002.
R. Rabbani and M. Zeeshan, “Impact of policy changes on financial viability of wind power plants in Pakistan,” Renew. Energy, vol. 193, pp. 789–806, 2022, doi: 10.1016/j.renene.2022.05.049.
M. Alipour, H. Salim, R. A. Stewart, and O. Sahin, “Residential solar photovoltaic adoption behaviour: End-to-end review of theories, methods and approaches,” Renew. Energy, vol. 170, pp. 471–486, 2021, doi: 10.1016/j.renene.2021.01.128.
D. Fares, M. Fathi, and S. Mekhilef, “Performance evaluation of metaheuristic techniques for optimal sizing of a stand-alone hybrid PV/wind/battery system,” Appl. Energy, vol. 305, no. September 2021, p. 117823, 2022, doi: 10.1016/j.apenergy.2021.117823.
G. Falchetta, F. Semeria, M. Tuninetti, V. Giordano, S. Pachauri, and E. Byers, “Solar irrigation in sub-Saharan Africa: economic feasibility and development potential,” Environ. Res. Lett., vol. 18, no. 9, 2023, doi: 10.1088/1748-9326/acefe5.
K. Piyumal, A. Ranaweera, S. Kalingamudali, and N. Kularatna, “Supercapacitor assisted hybrid PV system for efficient solar energy harnessing,” Electron., vol. 10, no. 19, 2021, doi: 10.3390/electronics10192422.
J. Jurasz, M. Guezgouz, P. E. Campana, and A. Kies, “On the impact of load profile data on the optimization results of off-grid energy systems,” Renew. Sustain. Energy Rev., vol. 159, no. December 2021, p. 112199, 2022, doi: 10.1016/j.rser.2022.112199.
B. K. Das, R. Hassan, M. S. H. K. Tushar, F. Zaman, M. Hasan, and P. Das, “Techno-economic and environmental assessment of a hybrid renewable energy system using multi-objective genetic algorithm: A case study for remote Island in Bangladesh,” Energy Convers. Manag., vol. 230, no. January, p. 113823, 2021, doi: 10.1016/j.enconman.2020.113823.
H. Sun, A. G. Ebadi, M. Toughani, S. A. Nowdeh, A. Naderipour, and A. Abdullah, “Designing framework of hybrid photovoltaic-biowaste energy system with hydrogen storage considering economic and technical indices using whale optimization algorithm,” Energy, vol. 238, p. 121555, 2022, doi: 10.1016/j.energy.2021.121555.
T. Akande and O. O. Alabi, “RESEARCH ARTICLE A Deep Learning-Based CAE Approach For Simulating 3D Vehicle Wheels Under Real-World Conditions,” no. January, 2024, doi: 10.47852/bonview42021882.
I. D’Adamo, M. Mammetti, D. Ottaviani, and I. Ozturk, “Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses,” Renew. Energy, vol. 202, no. September 2022, pp. 1291–1304, 2023, doi: 10.1016/j.renene.2022.11.127.
A. S. Al-Buraiki and A. Al-Sharafi, “Hydrogen production via using excess electric energy of an off-grid hybrid solar/wind system based on a novel performance indicator,” Energy Convers. Manag., vol. 254, no. December 2021, p. 115270, 2022, doi: 10.1016/j.enconman.2022.115270.
B. K. Das, M. A. Alotaibi, P. Das, M. S. Islam, S. K. Das, and M. A. Hossain, “Feasibility and techno-economic analysis of stand-alone and grid-connected PV/Wind/Diesel/Batt hybrid energy system: A case study,” Energy Strateg. Rev., vol. 37, no. July, p. 100673, 2021, doi: 10.1016/j.esr.2021.100673.
A. Arsalis, P. Papanastasiou, and G. E. Georghiou, “A comparative review of lithium-ion battery and regenerative hydrogen fuel cell technologies for integration with photovoltaic applications,” Renew. Energy, vol. 191, pp. 943–960, 2022, doi: 10.1016/j.renene.2022.04.075.
[30] L. Uwineza, H. G. Kim, and C. K. Kim, “Feasibilty study of integrating the renewable energy system in Popova Island using the Monte Carlo model and HOMER,” Energy Strateg. Rev., vol. 33, p. 100607, 2021, doi: 10.1016/j.esr.2020.100607.
W. Huang, W. Li, L. Tang, X. Zhu, and B. Zou, “A Deep Learning Framework for Accurate Vehicle Yaw Angle Estimation from a Monocular Camera Based on Part Arrangement,” Sensors, vol. 22, no. 20, 2022, doi: 10.3390/s22208027.
B. Zou, J. Peng, S. Li, Y. Li, J. Yan, and H. Yang, “Comparative study of the dynamic programming-based and rule-based operation strategies for grid-connected PV-battery systems of office buildings,” Appl. Energy, vol. 305, no. September 2021, 2022, doi: 10.1016/j.apenergy.2021.117875.
Z. Yao et al., “Machine learning for a sustainable energy future,” Nat. Rev. Mater., vol. 8, no. 3, pp. 202–215, 2023, doi: 10.1038/s41578-022-00490-5.
T. Zhou, H. Li, X. Li, C. F. Lange, and Y. Ma, “Advanced Engineering Informatics Feature-based modeling for variable fractal geometry design integrated into CAD system,” Adv. Eng. Informatics, vol. 57, no. February, p. 102006, 2023, doi: 10.1016/j.aei.2023.102006.
[35] O. O. Alabi, O. J. Gbadeyan, A. Bala, G. O. Ogunsiji, and N. Deenadayalu, “Study of Combustion Characteristics of Diesel-Vegetable Oil Blends Utilizing an Industrial Fuel Burner,” Fuel Commun., 2023, doi: 10.1016/j.jfueco.2023.100104.
O. O. Alabi, G. O. Ogunsiji, and S. A. Dada, “Performances Evaluation of Blended Alternative Refrigerant In Vapour Compression Refrigeration System,” vol. 8, no. 2, pp. 228–234, 2023, [Online]. Available: https://www.ftstjournal.com
C. Kinally, F. Antonanzas-Torres, F. Podd, and A. Gallego-Schmid, “Solar home systems in Malawi: Commercialisation, use and informal waste management,” Sustain. Prod. Consum., vol. 42, no. September, pp. 367–379, 2023, doi: 10.1016/j.spc.2023.10.008.
O. O. Alabi and T. A. Adeyi, “Analyzing Energy Performance and Assessing Dry Moisture Content of Briquettes through Numerical Investigations,” no. October, 2023.
C. Kinally, F. Antonanzas-Torres, F. Podd, and A. Gallego-Schmid, “Off-grid solar waste in sub-Saharan Africa: Market dynamics, barriers to sustainability, and circular economy solutions,” Energy Sustain. Dev., vol. 70, pp. 415–429, 2022, doi: 10.1016/j.esd.2022.08.014.
C. Ogbonnaya, C. Abeykoon, U. M. Damo, and A. Turan, “The current and emerging renewable energy technologies for power generation in Nigeria: A review,” Therm. Sci. Eng. Prog., vol. 13, no. April, p. 100390, 2019, doi: 10.1016/j.tsep.2019.100390.
I. D. Ibrahim et al., “A review on Africa energy supply through renewable energy production: Nigeria, Cameroon, Ghana and South Africa as a case study,” Energy Strateg. Rev., vol. 38, no. October, p. 100740, 2021, doi: 10.1016/j.esr.2021.100740.
A. A. Mas’ud, A. Vernyuy Wirba, F. Muhammad-Sukki, I. A. Mas’ud, A. B. Munir, and N. Md Yunus, “An assessment of renewable energy readiness in Africa: Case study of Nigeria and Cameroon,” Renew. Sustain. Energy Rev., vol. 51, pp. 775–784, 2015, doi: 10.1016/j.rser.2015.06.045.
T. Chamarande, E. Etienne, and S. Mathy, “Sizing isolated mini-grids in Kenya : Risk transfer to deal with multidimensional uncertainties and constraints,” Renew. Sustain. Energy Transit., vol. 5, no. March 2023, p. 100078, 2024, doi: 10.1016/j.rset.2024.100078.
B. Aboagye, S. Gyamfi, E. A. Ofosu, and S. Djordjevic, “Status of renewable energy resources for electricity supply in Ghana,” Sci. African, vol. 11, p. e00660, 2021, doi: 10.1016/j.sciaf.2020.e00660.
S. Wang et al., “International Journal of Thermal Sciences Numerical analysis of heat transfer between air inside and outside the tunnel caused by piston action,” Appl. Therm. Eng., vol. 37, no. August, p. 124305, 2024, doi: 10.1016/j.ijhydene.2023.11.136.
H. Omrany, R. Chang, V. Soebarto, Y. Zhang, A. Ghaffarianhoseini, and J. Zuo, “A bibliometric review of net zero energy building research 1995–2022,” Energy Build., vol. 262, 2022, doi: 10.1016/j.enbuild.2022.111996.
Q. Huang and J. Liu, “International Journal of Hydrogen Energy Preliminary assessment of the potential for rapid combustion of pure ammonia in engine cylinders using the multiple spark ignition strategy,” Int. J. Hydrogen Energy, vol. 55, no. September 2023, pp. 375–385, 2024, doi: 10.1016/j.ijhydene.2023.11.136.
M. Thirunavukkarasu, Y. Sawle, and H. Lala, “A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques,” Renew. Sustain. Energy Rev., vol. 176, no. January, p. 113192, 2023, doi: 10.1016/j.rser.2023.113192.
A. L. Konde, M. Kusaf, and M. Dagbasi, “An effective design method for grid-connected solar PV power plants for power supply reliability,” Energy Sustain. Dev., vol. 70, pp. 301–313, 2022, doi: 10.1016/j.esd.2022.08.006.
E. C. Chukwuma, F. C. Okey-Onyesolu, K. A. Ani, and E. C. Nwanna, “Gis bio-waste assessment and suitability analysis for biogas power plant: A case study of Anambra state of Nigeria,” Renew. Energy, vol. 163, pp. 1182–1194, 2021, doi: 10.1016/j.renene.2020.09.046.
S. Dorel, M. Gmal Osman, C. V. Strejoiu, and G. Lazaroiu, “Exploring Optimal Charging Strategies for Off-Grid Solar Photovoltaic Systems: A Comparative Study on Battery Storage Techniques,” Batteries, vol. 9, no. 9, 2023, doi: 10.3390/batteries9090470.