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Abstract 
Combinatorial t-way testing techniques aim to identify faults that arise from interactions among system components. Test 

case generation is a prominent area within combinatorial t-way testing, presenting challenges due to its classification as a 

non-deterministic polynomial-time hardness (NP-Hard) problem. Numerous t-way strategies have been proposed in the 

literature to generate optimal test data. While some of these strategies are optimization-based and focus on factors such as 

uniformity, variability, and input-output interaction strength. This paper presents a scoping review that will assess and 

evaluate the perspective features of the existing combinatorial t-way testing strategies from 2013 to 2023. More so, we 

describe t-way testing techniques, analyze existing literature, and suggest future research directions. The objective is to 

provide a valuable resource for researchers and practitioners involved in combinatorial t-way testing. Additionally, we 

present a quantitative assessment that includes an evaluation of combinatorial t-way testing strategies’ literature-based, 

approach-based, interaction-based characteristics, support-based, and search-based methods. Finally, we proposed 

potential possibilities for further exploration of combinatorial t-way testing. 
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1. Introduction  
Information and communication technology is anticipated to foster sustainable global development due to its rising 

impact [1]. Software testing is crucial in the software development life cycle that executes a program or system purposely 

to find errors [2], [3]. Software testing is far from simple and is characterized by various complexities. These complexities 

span across a wide range of testing types, numerous tools used to facilitate testing, and the challenges associated with 

selecting the right test cases. Software testing can be costly in terms of human effort, or the technology required 
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enhancing the effectiveness of human effort. Recent research shows that testing normally takes closer to 50% of the total 

development time [4]. As such, many different testing strategies are employed in a wide range of applications for 

software testing.  

Generally, software testing methods are classified into two categories: static testing and dynamic testing. Static 

testing does not involve executing the code and includes techniques like inspection, walkthrough, and code review, 

aiming to identify errors early in development. Dynamic testing involves executing the code and analyzing output values 

based on input values, classified into white box testing (focused on internal structure), black box testing (focused on 

input-output behavior), and grey box testing (limited knowledge about code) [5]. White box testing evaluates code 

structure through methods like statement, branch, and path testing. Black box testing prioritizes finding deviations from 

specified behavior using techniques like equivalence partitioning, boundary value analysis, and combinatorial testing [6]. 

Combinatorial testing, a black box technique, is effective in creating test cases by combining parameter values to enhance 

system reliability and reduce failures caused by interactions between parameters [7], [8].  

According to [9], the objective of combinatorial testing is to detect faults that may arise in a software 

configuration system by utilizing a concise test suite that covers all feasible parameter values and their combinations. A 

test case is a set of conditions used in software testing to check if a particular software configuration system functions as 

intended [6]. In the realm of combinatorial testing, test cases are created by combining various parameter values. This 

approach aims to minimize system failures and enhance overall system reliability. Exhaustive testing aims to test all 

possible parameter value combinations to ensure that the product cannot be destroyed. Most researchers agree that 

employing exhaustive testing is not practical and combinatorial testing can overwhelm the problem of exhaustive testing 

since software failures are detected when interaction happens between values of parameters [10], [11].  

The combinatorial testing approach known as the t-way technique utilizes the concept of interaction strength, 

represented by the variable 't' [12]. For instance, when ‘t’ is set to 2, it involves testing combinations of two parameters 

within the system under testing. The range of 't' can be adjusted from 2 to encompass all parameters in the system. By 

systematically generating test cases using t-way testing, all essential interaction elements are covered at least once, 

leading to a reduction in test suite size proportional to the interaction strength represented by 't'. Research findings 

indicate that faults in software systems are often triggered by two-parameter interactions, some of which may result from 

higher-order interactions [13], [14]. Thus, t-way techniques create a concise test suite that maximizes interaction tuple 

coverage by systematically ensuring that each test case covers the maximum number of interaction tuples based on t-way 

coverage. Combinatorial t-way testing techniques come in three types: uniform interaction strength, variable interaction 

strength, and input-output-based relations.  

Certainly, several surveys have been conducted in the past decade such as Othman et al. [15] that focused on 

computational implementation, supported interaction, strategy approach, automation support and deployment; Alsewari 

and Zamli [16] focus on those based on Simulated Annealing, Genetic Algorithms, Ant Colony Algorithms, Particle 

Swarm Optimization, and Harmony Search; Khalsa and Labiche [17] focused on support for selection criteria, mixed 

covering arrays, coverage strength, and support for constraints among parameters; Alsewari et al. [18] that focus on 

supporting input-output features based on nature-inspired algorithms; Mudarakola and Padmaja [19] search mechanism 

(such as Particle Swarm Optimization, Genetic Algorithm, Ant Colony Algorithm, Simulated Annealing, and Bee Colony 

Optimization); Fadhil et al. [20] conducted a comprehensive systematic review focused on various criteria, such as 

generation technology, supported interactions, test strategy method, mixed coverage, and support for parameter 

constraints. Additionally, Alazzawi et al. [21] conducted a comprehensive survey focusing on some selected test case 

generation strategies. Recently, La chance et al. [22], conducted a review only focus on application of combinatorial 

testing in a distributed computing. While the literature has surveyed and examined state-of-the-art t-way test suite 

generation strategies during the period of their studies, they have not accounted for recent advancements, particularly 

some combinatorial prospective feature combination such as literature-based approach-based, t-way interaction-based, 

and support-based (seeding and constraint). Moreover, they have overlooked the application of newer search methods 

such as metaheuristic methods, hybridization methods, and hyper heuristic methods. Consequently, the goal of this 

research is to enhance previous reviews and surveys by integrating and giving emphasis to a select few newly developed 

t-way strategies.  

One of the most recent challenges in optimization is the combinatorial explosion problem since it is considered 

NP-hard. Muazu et al. [23] states that numerous algorithms have been created to tackle ongoing challenges in the 

combinatorial explosion, and metaheuristics are an effective optimization approach. Originally introduced by Glover in 

1986 as “modern heuristics”, the term later changed to “metaheuristics” [24]. The name comes from the Greek words 

“meta” and “heuristic”, meaning “beyond, in an upper level” and “to find”, respectively. Ant Colony Optimization, 

Genetic Algorithms, Evolutionary Computation, Tabu Search, Simulated Annealing, and Harmony Search Algorithm are 

all part of the metaheuristic class of algorithms. Eventually, many of these metaheuristic algorithms have been employed 

to solve various optimization problems, including scheduling problems [25], X-ray segmentation problems [26], feature 

selection problems [27], skin lesions problems [28], and so on. Similarly, some combinatorial t-way strategies employed 

metaheuristic methods to generate test cases to overcome the standing problem. Examples of metaheuristic-based t-way 

strategies are HGHC [29], ABCVC [30], GS [8], and so on by utilizing the Hill Climbing algorithm, Artificial Bee 

Colony, and Genetic algorithm, respectively.  
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This study is primarily motivated by the goal of evaluating and exploring existing combinatorial t-way strategies for 

addressing optimization problems. Additionally, it seeks to investigate aspects that might have been overlooked in prior 

research, with the aim of uncovering opportunities for improvements in the field. Through a literature review and a 

detailed methodology, this review offers fresh perspectives on some key features of combinatorial t-way testing, with the 

intention of inspiring further analysis and discussions, while considering ways to enhance future studies in the same 

domain. While some of the existing strategies exhibit impressive results, practical implementation can be challenging due 

to their differing support requirements. By providing insights into their potential contributions and limitations, we aim to 

offer a realistic outlook on their prospective features.  

An entire aspect of our work, which we plan to expand upon in future research, is the application of 

metaheuristic, hybridization, or hyper-heuristic methods with constraint and seeding support in combinatorial t-way 

techniques for upcoming strategies. The objective is to enhance software quality and generate an efficient test suite. 

Therefore, this survey paper will provide an assessment and evaluation of existing combinatorial t-way strategies from 

2013 to 2023. Additionally, it will present an analysis of the performance of these strategies with their challenges, identify 

research gaps, and propose directions for future research.  

To present the information clearly and logically, this paper is structured as follows: Section 2 introduces the 

research's search method and selection criteria; Section 3 gives an overview of combinatorial t-way testing; Section 4 

reviews existing strategies in combinatorial t-way testing literature; Section 5 discusses the evaluation of the strategies’ 

analysis, challenge, and limitation with future recommendations; and finally, Section 6 present the conclusion.  

 

2. Search Method and Selection Criteria  
In this aspect, we intend to classify the studies based on the perspective features of combinatorial t-way testing such as 

literature-based, approach-based, interaction-based, support-based, and search-based. Moreover, we performed a literature 

review by following the structured Preferred Reporting Items for the Systematic Review and Meta-Analysis (PRISMA) 

framework outlined in [31]. This method involved several key steps, beginning with the formulation of specific research 

questions. We then identified suitable search engines and carefully defined relevant search terms to ensure a thorough 

exploration of existing literature. We then established specific criteria to determine which articles would be included in 

our review and which would be excluded. These criteria were crucial in maintaining the relevance and quality of the 

articles selected for analysis. By adhering to these guidelines, we were able to systematically assess and synthesize the 

existing combinatorial t-way testing strategies accordingly.  
 

2.1 Research Questions  

Conducting a literature review to evaluate the current state of three distinct research questions is formulated as follows: 

Question 1-What are the combinatorial t-way testing techniques?  

Question 2-What are the existing combinatorial t-way testing strategies? 

Question 3-How can the combinatorial perspective features of the existing combinatorial t-way testing strategies    

be evaluated?  

Conducting a literature review to analyze the current state-of-the-art of the existing combinatorial t-way testing strategies 

and to propose potential future directions is essential. The first research question will be addressed in Section 3 by 

reviewing the three possible t-way techniques, while the second research question will be explored in Section 4 through a 

comprehensive review and analysis of all existing combinatorial t-way testing strategies found in the literature. 

Furthermore, we will identify limitations and demonstrate that combining multiple support mechanisms enhances 

software quality with an optimal test suite. On the other hand, the third research question will be explored in the results 

and discussion in Section 5 through various quantitative assessments that include the strategy’s year of publication, 

approached-based, search-based, interaction-based, and support-based. 
 

2.2 Search Engines & Search Terms  

In this subsection, we outline the search engines and search terms utilized during the literature review. We carried out and 

organized our research within the period of years from 2013 to 2023 across five primary platforms commonly used by 

researchers: Web of Science, Google Scholar, Springer, ResearchGate, and IEEE Explore. The specifics of our initial 

searches on these platforms are presented in Table 1, which demonstrates that most of the articles were sourced from 

ResearchGate, followed by Google Scholar, Web of Science, IEEE Explore, and Springer. Figure 1 illustrates the 

compilation of 58 articles that were identified, retrieved, screened, and included from the mentioned platforms for use in 

the study’s analysis. 
 

Table 1 Search Detail 
Platform No of Articles 

Web of Science 48 

Google Scholar 81 

ResearchGate 89 

IEEE Explore 42 

Springer 22 

Total 282 
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Additionally, specific search terms were employed on each platform to locate pertinent studies aligned with the 

previously mentioned keywords. The utilized search terms are as follows: "combinatorial testing", "testing strategy", "t-

way testing", “test case generation”, “final test suite”, and “covering array”. It's worth noting that a total of 282 articles 

were identified and retrieved from the mentioned platforms for use in the study, although some were discovered to fall 

outside the scope of the research that include test suite generation in areas like fairness testing [32], big data [33], 

software product line [12], software defect [34], network security [35], and self-adaptive system [36]. 
 

 
Fig. 1 PRISMA flow diagram for the Paper Selection Process 

 

2.3 Criteria for Inclusion and Exclusion of Articles  
Numerous articles were located by employing the search terms mentioned earlier within the search engine. After a 

comprehensive review of the search results, a thoughtful choice was made to select a total of 58 combinatorial t-way 

testing strategies articles as shown from Figure 1. This selection process was carried out following the specific criteria 

outlined in Table 2, which acted as a guideline for inclusion. It's worth highlighting that the authors undertook the task of 

meticulously sifting through the articles, purposefully excluding those that were not directly relevant to the research 

focus. The objective was to guarantee the inclusion of articles where the search terms were evident in their titles or 

abstracts, thus prioritizing those with the utmost relevance and significance for integration into the study. 
 

Table 2 Selection Process for Inclusion and Exclusion of Articles 

Criteria Conditions 

Inclusion 

The requirement is that the content must be composed in the English language. 

The material must be published in a journal, conference, or lecture note. 

It should concentrate on combinatorial t-way testing. 

The published t-way strategies should be between 2013 to 2023. 

Exclusion 

Publications that are not written in the English language. 

Articles that are duplicated across multiple platforms. 

Theses, dissertations, and final year project reports that have been published. 

Textbooks 
 

3. Combinatorial T-Way Testing Techniques  
Combinatorial t-way testing is a standard for testing software configurations, which requires that every combination of 

parameter values for each t-way combination of input parameters must be covered by at least one test case based on its 

specifications [6], [37]. Over 10 years, combinatorial t-way techniques have attracted much attention for constructing a 

minimal test case which is an NP-hard problem [38]. By treating combinatorial interaction testing as an optimization 

problem, researchers have focused on using optimization methods to improve t-way strategies [39], [40], [41].  
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According to [42], all t-way strategies are classified into three search-based categories: either algebraic-based, 

computational-based, or metaheuristic-based strategies. In the algebraic method, mathematical functions are employed on 

the t-way strategies to produce test cases. However, a drawback of the algebraic approach is that the computations 

involved are typically lightweight; they are only applicable to small configuration systems; they impose restrictions on the 

strength of interactions, despite producing optimal test suites, it achieved the fastest execution time. This limitation 

hinders the applicability of the algebraic approach to t-way strategies [43]. An illustration of a strategy based on algebraic 

principles is the use of Orthogonal Array (OA). In the computational approach, all limitations associated with the 

algebraic approach are eliminated. However, this approach can be expensive due to considering the entire combination 

space [43]. The Automatic Efficient Test Generator (AETG) serves as a representative example of a strategy based on 

computational approaches. Recently, the emerge of metaheuristic approach overcomes the interaction testing problem 

[23]. An illustration of a strategy based on metaheuristics is Cuckoo Search (CS).  

Furthermore, when constructing a test case, literature [4], [29] has categorized t-way strategies into two primary 

approaches: the One-test-at-a-time (OTAT) approach and the One-parameter-at-a-time (OPAT) approach. With OTAT, 

an empty test suite is initially created, and test cases are added one by one until all are covered. Whenever a test case is 

chosen, it is included in the final suite (vertical extension). In contrast, OPAT starts with an initial test suite and gradually 

includes one parameter at a time until all are covered (horizontal extension). If any test cases are missing after this step, 

they are added in the vertical extension to ensure maximum interaction coverage. Figure 2 presents the organization of 

combinatorial interaction t-way testing strategies of all the mentioned features (search-based, approach-based, support-

based, and interaction-based). Nevertheless, t-way testing techniques are classified into three forms: uniform interaction 

strength, variable interaction strength, and input-output-based relations. 
 

 
Fig. 2 Illustration of Combinatorial Interaction Testing Strategies Organization 

 

3.1 Uniform Interaction Strength  

The uniform interaction strength is a method used in combinatorial t-way testing to combine parameter values based on a 

consistent level of interaction strength. This method ensures that each t-way combination of input parameters in a 

software configuration system has the same level of interaction strength [44]. This means that each test case covers the 

same number of interaction tuples. The number of interaction strengths represents the maximum count of parameters that 

can be involved in an interaction. For instance, if t=2 and the number of parameters is 4, then the maximum interaction 

strength will be 2. This means that the uniform interaction strength will combine the values of parameters in pairs to 

ensure that each combination of values is covered by at least one test case [6], [42]. Moreover, uniform interaction 

strength handles two mathematical notations: Covering Array (CA) and Mixed Covering Array (MCA). The CA notation 

is represented as CA (N, t, v
p
). Where the variables N, t, v, and p refer to the final test suite size, strength interaction, 

number of values, and number of parameters of a system under test, respectively. 

 

3.2 Variable Interaction Strength  

The term "variable interaction strength" refers to a measure that considers multiple levels of interaction intensity between 

different variables [45]. This measure can be adjusted to account for different subsets of parameters, meaning that it can 

be customized to capture the interactions of interest within a given system or model. By considering these various levels 

of interaction intensity, the variable interaction strength measure provides a more nuanced understanding of how different 

variables affect one another and can help identify important patterns or relationships within a complex system. Moreover, 

the concept of variable interaction strength can be utilized in testing any software configuration system or a system that 

requires executing multiple configurations [6], [42]. Unlike uniform interaction, the variable interaction strength deals 

with Variable Covering Array (VCA) notation which can be represented as VCA (N, t, G1, G2). In this context, N and t 

represent the size of the final test suite and the strength of interaction, respectively. G1 and G2 denote the number of 

values and various parameters of a system under test, which can be either CA and/or MCA, allowing it to accommodate 

different strengths of interaction.  
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3.3 Input-Out Based Relation  
The input-output-based relation refers to the connection between the inputs and outputs of a system, and the combination 

of parameters that affect a specific output. In many systems or models, there can be multiple inputs that can influence one 

or more outputs, and the nature of the relationship between these inputs and outputs can be complex. The input-output-

based relation can help to simplify this complexity by identifying the specific parameters or combination of parameters 

that have the greatest impact on a given output. The reason for introducing it was to avoid duplication of test cases, as not 

all software configuration systems possess identical features [6], [42]. The input-output-based relation utilizes the VCA 

notation, which can be expressed as IOR (N, {A1, A2, …, Ar}, v1
p1

, v2
p2

, …, vz
pz

). N, v, and p have the same meanings as 

in VCA. However, in this case, the symbols A represents multiple sets of parameters, and these sets collectively 

determine the relationships contributing to the outputs. It's worth noting that these parameter sets in K can be indexed 

from 0, 1, 2, and so forth, up to z-1. 
  
3.4 Combinatorial Interaction t-way Running Example  
From a mathematical perspective, the Covering Array (CA) notation CA (N; t, v

p
) involves the utilization of parameters 

N, t, p, and v. These parameters represent the test size, interaction strength, the number of parameters involved, and the 

requirement for uniform values, respectively. Let's examine a basic software system represented as a CA (N; 2, 2
3
), where 

t is 2 with 3 parameters having 2 values each as shown in Figure 3, whereas the parameters and values of the system 

under testing are represented in Table 3. Here, the exhaustive combinations at full strength t = 3 in the final test suite will 

contain eight test cases as shown in Table 4. When t = 2 was selected based on Figure 3, three potential 2-way 

interactions were identified: PQ, PR, and QR. The ideal 2-way test suite contains only four test cases, covering all the 

necessary interactions. However, in this specific example, there is a 50% reduction in size compared to an exhaustive test 

suite. 
 

Table 3 Parameters and Values of the System Under Testing 

Parameters P Q R 

Values 
p1 q1 r1 

p2 q2 r2 

 
Table 4 CA (N; 2, 2

3
) notation by exhaustive testing 

Parameters 
Test case 

1st 2nd 3rd 4th 5th 6th 7th 8th 

P p1 p1 p1 p1 p2 p2 p2 p2 

Q q1 q1 q2 q2 q1 q1 q2 q2 

R r1 r2 r1 r2 r1 r2 r1 r2 

 

 
 

Fig. 3 Uniform interaction strength combination of CA (N; 2, 2
3
) 

 

4. Literature Review 
In this section, existing combinatorial t-way strategies are further surveyed. However, these strategies are identified 

according to their names, authors, year of publication, interaction-based, and search-based, as well as their limitations. 

Furthermore, combinatorial t-way testing strategies are classified into three forms of interaction: uniform interaction, 

variable interaction, and input-output-based relations. 
 

4.1 Uniform Interaction-Based Strategies 

These are the t-way combinatorial strategies that ensure uniform interaction strength. The N-IPO, short for Novel IPO, is 

an innovative adaptation of the IPO strategy, incorporating the Fibonacci method for constraint testing [46]. N-IPO is 

built upon Pairwise testing and can be described as a hybrid model that combines the strengths of the IPO strategy, 

boundary value analysis, the Fibonacci series, and a pseudo-recursive technique. In [47] TS_OP is considered a 

distributed t-way testing strategy that utilizes Map and Reduce techniques on a network of workstations through Tuple 

Space Technology. It adopts the OPAT approach for test case generation and is designed to maintain uniform interaction 

strength (t ≤ 6). When TS_OP was applied to five different environments, it yielded varying results, which led to its 

classification as a nondeterministic strategy. The ACTS [48] strategy merges elements of IPOG strategies for 
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combinatorial testing to achieve a balanced trade-off between the size of the test suite and execution time. ACTS is 

capable of supporting t-way strengths up to 6 (where t is less than or equal to 6) while incorporating mixed-strength and 

constraint testing.  

The BA [49] strategy employs the Bees Algorithm mechanism to create test data for uniform interaction testing, 

ensuring the strength does not exceed t<=10. SITG [50] draws inspiration from the Particle Swarm Intelligence 

algorithm's mechanism to create optimal test cases. SITG is designed to maintain a uniform interaction strength, 

accommodating values up to t=6. Nasser et al. [51] discusses the t-way strategy known as the Cuckoo Search Strategy 

(CSS), which utilizes the egg-laying behavior of cuckoo birds to generate test cases. The fundamental concept of CSS 

revolves around three core rules of cuckoo search algorithm: each cuckoo lays one egg at a time and deposits it in a 

randomly chosen nest; nests with superior egg quality are preserved for successive generations; the count of accessible 

host nests remains constant, and the host bird detects an egg laid by a cuckoo with a certain probability. CSS supports 

uniform interaction strength, where t is limited to 3, except for seeding and constraint support. In [52], the BST strategy 

was introduced to support uniform interaction strength up to t <= 6. BST adopts the OTAT approach of generating test 

cases with the bat algorithm. In subsequent work, a revised version of BST was presented in [53], which added support 

for constraints. However, it is important to note that this revised version only accommodates pairwise (2-way) testing.  

LAHC [54] utilizes the Late Acceptance Hill Climbing algorithm to produce a t-way test suite while incorporating 

constraints. LAHC is tailored to ensure uniform interaction strengths with t <= 4. MTTG [55] strategy is inspired by the 

'Kids Card' game, where a player randomly draws cards from a deck and aims to assemble a complete 'Set' of a specific 

card by sharing it with other participants. MTTG facilitates uniform interaction with increased strength when t is 12 or 

less. The FS strategy, introduced in reference [56], employs the Flower Pollination Algorithm mechanism as its core 

approach for generating uniform interaction strengths, supporting values up to t=10. PMBOS [57] is a pairwise strategy 

that utilizes the Migrating Birds Optimization concept to create test cases. Later, a hybrid strategy was introduced by 

merging the Migrating Birds Optimization with Genetic Algorithm, which is known as EMBO-GA [58]. Notably, the 

EMBO-GA can handle interactions of up to t-way with a maximum of 4. The HHH [59] strategy employs a hyper-

heuristic approach, with Tabu Search as its high-level metaheuristic, and it harnesses the capabilities of Teaching 

Learning-based Optimization, Particle Swarm Optimization, Global Neighborhood Algorithm, and Cuckoo Search 

Algorithm as its low-level metaheuristics. HHH is designed to enable uniform interactions with a strength of t ≤ 6.  

In [60], the pairwise Artificial Bee Colony algorithm (PABC) was introduced. PABC is integrated into the Artificial Bee 

Colony algorithm to facilitate uniform interaction strength with t equal to 2. PCFHH is a pairwise strategy using three 

criteria to choose from four low-level heuristics (known as choice function) during the search process [61]. Ahmed et al. 

[62] introduces a novel approach for creating constrained combinatorial interaction test suites known as MOPSO. 

MOPSO utilizes a combination of multi-objective particle swarm optimization and multithreading to identify the best 

possible test cases and execute the algorithms concurrently. MOPSO is designed to facilitate uniform interaction strength, 

with the condition that 't' must not exceed 6. Nasser et al. [63] proposed four variations of the FPA strategy, all of which 

are based on the Flower Pollination Algorithm. These variations include the original FPA, hybrid elitism FPA (eFPA), 

hybrid mutation FPA (mFPA), and hybrid local search FPA (lFPA). The eFPA gives priority to stronger individuals and 

replaces weaker ones with new pollen in a random fashion. The mFPA introduces diversity through a mutation operator, 

and the lFPA employs an intense local search to improve local intensification. Both strategies are designed to 

accommodate uniform interaction strengths t ≤ 3.  

HCATS was proposed and implemented in [64] to support a uniform interaction strength (t = 2). The purpose of 

designing HCATS was to modify HSS [65] to incorporate the OPAT approach to generate test cases. HCATS adopts the 

Harmony Search Algorithm as its basis in regulating the search for both local and global solutions. The LCS strategy, 

short for Learning Cuckoo Search, makes use of the Cuckoo Search algorithm to generate test cases following the OTAT 

approach [66]. LCS is designed to handle uniform interaction strengths up to t, where t is no greater than 3. Furthermore, 

LCS combines this with a hybrid approach by integrating the Teaching Learning-based Optimization Algorithm. mSITG 

[67] relies on a swarm intelligence-based search mechanism to generate an optimal test suite. It supports uniform 

interaction strength with a maximum of t=6. OPAT-HS supports uniform interaction strength (2 ≥ t ≤ 3) [68]. OPAT-HS 

adopts OPAT based on the Harmony Search Algorithm, and it takes similar parameter settings to HCATS with interaction 

strength above 2. FATG [69], short for Firefly Algorithm-based Test Suite Generator, was created to speed up the 

execution of combinatorial t-way testing. FATG makes use of the Firefly Algorithm and accommodates uniform 

interaction strengths up to t, where t is restricted to 3. Later, an Adaptive Firefly Algorithm (AFA) [70] was presented, but 

it's important to note that it's designed specifically for pairwise testing. MOCSFO [71] employs the Crow Search 

Algorithm to create combinatorial t-way testing with constraint support. MOCSFO provides support for uniform 

interaction strengths up to t, with a maximum limit of 3.  

The pATLBO_RO [72] is a pairwise strategy that utilizes Teaching Learning Based Optimization to simulate the 

guidance of a teacher on learners. GAPSO [73] can generate pairwise test cases by leveraging both Genetic and Particle 

Swarm Optimization algorithms. Alsewari et al. [74] implemented the GTHS strategy based on the standard Harmony 

Search Algorithm which only needs to set the parameters. GTHS adopts the OTAT approach, and it is specifically 

implemented to accommodate interactions with a uniform strength (2 ≥ t ≤ 6). IJA [75] improves its ability to intensify 

and diversify through the inclusion of new search operators like Lévy flight and mutation operators. It relies on the Jaya 
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Algorithm to generate optimal test cases and is designed to maintain a uniform interaction strength, accommodating 

values up to t=10. WOA [76] implements the Whale Optimization Algorithm for t-way testing, incorporating support for 

constraints, and it can handle uniform interaction strengths up to t, with a maximum limit of 6. LHS-JA [77] is built upon 

the enhanced Jaya Algorithm, aimed at enhancing search diversity to achieve an optimal test suite. LHS-JA 

accommodates uniform interaction strengths up to t=10. In [78] introduced PWiseHA which adopts the OPAT approach 

using the concept in Harmony Search Algorithm and supports uniform interaction strength. PWiseHA supports interaction 

strength up to 4, which is within the range of 2 to 4, inclusively (2 ≤ t ≤ 4).  

MABCTS [79] is built upon the Modified Artificial Bee Colony algorithm for generating t-way test cases, and it 

offers support for uniform interaction strength when t is less than or equal to 6. FPA-HC is a pairwise strategy based on a 

hybrid method that combines the Flower Pollination Algorithm and Hill Climbing as the core of its search engine for 

generating the test suite [80]. A hybrid method developed through the integration of the Migrating Birds Optimization and 

Genetic Algorithm known as EMBO-GA Strategy [58]. EMBO-GA is designed to accommodate t-way interactions with a 

strength t ≤ 4. PGSAS [81] is a pairwise strategy that specifically focuses on pairs of elements (t = 2). In contrast, the 

GSTG [43] strategy is designed for generating test configurations with a much broader scope of interaction coverage 

compared to PGSAS, accommodating higher values of t, which can go up to 10. Both PGSAS and GSTG utilize the 

OTAT approach, employing the Gravitational Search Algorithm. The BHA [82] strategy adopts the OTAT approach, 

utilizing the Black Hole Algorithm to facilitate uniform t-way interaction testing, with t<=4. AutoCCAG [83] represents a 

method for generating Constrained Covering Arrays, which integrates automated algorithm configuration and selection 

for t-way testing. It is specifically tailored to enable uniformly 5-way interactions.  

BAPSO is a hybrid metaheuristic strategy that combines the strengths of the Bat Algorithm and Particle Swarm 

Optimization [84]. BAPSO supports uniform interaction strength, encompassing all possible test configurations with t not 

exceeding 6. TWGH [85] employs three metaheuristic algorithms, namely the Whale Optimization Algorithm, Gray Wolf 

Optimization, and Harmony Search Algorithm, to generate optimal test cases. It combines the Whale Optimization 

Algorithm and Gray Wolf Optimization in its exploration and exploitation mechanisms. Additionally, to enhance 

convergence speed, TWGH adjusts the Harmony Search Algorithm values, harmony memory considering the rate, and 

pitch adjustment rate. TWGH is designed to support uniform interactions, even for high-strength combinations with t 

values up to 12. Odili et al. [86] recently introduced four hybrid variations of the African Buffalo Optimization algorithm 

for t-way testing, including the Mutation Buffalo Strategy (mBS), Local-Search Buffalo Strategy (lBS), Elitism Buffalo 

Strategy (eBS), and Elitism Local-Search Buffalo Strategy (elBS). It's important to mention that all of these variations are 

designed to handle uniform interaction strength up to t=10. HGHC [29] is the most recent approach for t-way testing, 

combining the Greedy and Hill Climbing Algorithms to enhance test case optimization. HGHC ensures uniform 

interactions with a higher level of strength when t ≤ 15. The analysis of uniform interaction-based combinatorial t-way 

testing strategies is presented in Table 5. 

 
Table 5 Analysis of uniform interaction-based combinatorial t-way testing strategies 

Literature Prospective features 

Limitation(s) Strategy’s 

Name 
Reference Approach 

t-way 

strength 

Support 

Constraint Seeding Search-based 

N-IPO [46] OPAT t = 2 ✓ X Computational 

Handle one interaction 

strength and lack support for 

metaheuristic-based and 

seeding. 

TS_OP [47] OPAT t ≤ 6 X X Computational 

Handle one interaction's 

strength and lacks support 

for metaheuristic-based, 

seeding, and constraints. 

ACTS [48] OPAT t ≤ 6 ✓ X Computational 

Handle one interaction 

strength and lacks support 

for metaheuristic-based and 

seeding 

BA [49] OTAT t ≤ 10 X X Metaheuristic 

Handle one interaction's 

strength and lacks support 

for seeding and constraints. 

SITG [50] OTAT t ≤ 6 X X Metaheuristic 

Handle one interaction's 

strength and lacks support 

for seeding and constraints. 

CSS [51] OTAT t ≤ 3 X X Metaheuristic 

Handle one interaction's 

strength and lacks support 

for seeding and constraints. 

BST [52] OTAT t ≤ 6 X X Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

LAHC [54] OTAT t ≤ 4 ✓ X Metaheuristic 

Handle one interaction's 

strength and lacks support 

for seeding. 
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MTTG [55] OTAT t ≤ 12 X X Computational 

Handle one interaction 

strength and lacks support 

for metaheuristic-based, 

seeding, and constraints 

FS [56] OTAT t ≤ 10 X X Metaheuristic 

Handle one interaction's 

strength and lacks support 

for seeding and constraints. 

PMBOS [57] OTAT t = 2 X X Metaheuristic 

Handle one interaction's 

strength and lacks support 

for seeding and constraints. 

HHH [59] OTAT t ≤ 6 X X 
Hyper-heuristic-

Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

PABC [60] OTAT t = 2 X X Metaheuristic 

Handle one interaction's 

strength and lacks support 

for seeding and constraints. 

PCFHH [61] OTAT t = 2 X X 
Hyper-heuristic-

Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

MOPSO [62] OTAT t ≤ 6 ✓ X Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding 

FPA [63] OTAT t ≤ 3 X X Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

BST [53] OTAT t = 2 ✓ X Metaheuristic 

Handle one interaction's 

strength and lacks support 

for seeding. 

HCATS [64] OPAT t = 2 X X Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

LCS [66] OTAT t ≤ 3 X X 
Hybrid- 

Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

mSITG [67] OTAT t ≤ 6 X X Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

OPAT-HS [68] OPAT t ≤ 3 X X Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

FATG [69] OTAT t ≤ 3 X X Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

AFA [70] OTAT t = 2 X X Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

MOCSFO [71] OTAT t ≤ 3 ✓ X Metaheuristic 

Handle one interaction's 

strength and lacks support 

for seeding. 

pATLBO_RO [72] OTAT t = 2 X X Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

GAPSO [73] OTAT t = 2 X X 
Hybrid- 

Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

GTHS [74] OTAT t ≤ 6 X X Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

IJA [75] OTAT t ≤ 10 X X Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

WOA [76] OTAT t ≤ 6 ✓ X Metaheuristic 

Handle one interaction's 

strength and lacks support 

for seeding. 

LHS-JA [77] OTAT t ≤ 10 X X Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

PWiseHA [78] OPAT t ≤ 4 X X Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

MABCTS [79] OTAT t ≤ 6 X X Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 
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FPA-HC [80] OTAT t = 2 X X 
Hybrid- 

Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

EMBO-GA [58] OTAT t ≤ 4 X X 
Hybrid- 

Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

PGSAS [81] OTAT t = 2 X X Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

GSTG [43] OTAT t ≤ 10 X X Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

BHA [82] OTAT t ≤ 4 X X Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

AutoCCAG [83] OTAT t ≤ 5 ✓ X Computational 

Handle one interactions 

strength, lacks support for 

metaheuristic-based, and 

seeding. 

BAPSO [84] OTAT t ≤ 6 X X 
Hybrid- 

Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

TWGH [85] OTAT t ≤ 12 X X 
Hybrid- 

Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

mBS, lBS, 

eBS, leBS 
[86] OTAT t ≤ 10 X X Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 

HGHC [29] OTAT t ≤ 15 X X 
Hybrid- 

Metaheuristic 

Handle one interaction 

strength and lacks support 

for seeding and constraints 
 

4.2 Variable Interaction-Based Strategies 

These strategies encompass t-way combinations, ensuring varying levels of interaction strength. The GVS_CONST 

strategy is founded on a computational approach designed to facilitate variable interaction strength (t ≤ 5), while also 

taking constraints into account when generating test cases [87]. GVS_CONST employs a tuple tree data structure to 

reduce the time required for tuple generation and the process of checking uncovered scenarios. TSG [88] utilizes a 

multilevel Greedy Algorithm to build test suites that can handle interactions of varying strengths, with support for 

strengths up to t=3. ATLBO [89] employs Teaching Learning-Based Optimization, relying on the Mamdani fuzzy 

inference system. ATLBO offers support for variable interaction strength, with t values up to 4. GS employs a Genetic 

Algorithm to create test suites that accommodate interaction strengths ranging from uniform to variable, up to a maximum 

of 20 [8]. Additionally, GS computes the weight before generating test cases to enhance the optimization process. 

In [30], the ABCVS strategy is introduced, which is designed for both uniform and variable strength test suites. 

ABCVS utilizes the Artificial Bee Colony algorithm as its core component to generate optimal test suites. Furthermore, 

ABCVS can support interaction strengths up to t ≤ 6. The VCS strategy is designed to provide variable strength support 

within the Cuckoo Search algorithm to optimize test case sizes [90]. However, VCS is capable of accommodating 

interaction strengths up to t ≤ 6. In [91], the VS-MGS strategy incorporates a Greedy Algorithm with an elitism 

mechanism throughout the iterations to enhance the efficiency of test case generation. VS-MGS supports variable 

interaction strengths up to t ≤ 6. Ramli et al. [92], the Const-TTSGA strategy was created to generate test suites that cover 

a range of interaction strengths, including both uniform and variable scenarios with t≤ 4. Const-TTSGA is categorized as 

a metaheuristic approach and employs the Ant Colony Algorithm to optimize the composition of test suites. SCAVS [93] 

utilizes the Sine Cosine Algorithm to generate variable interaction strengths, with support for up to t ≤ 6. The HABC 

strategy employs hybridization methods that harness the advantages of both the Artificial Bee Colony Algorithm and 

Particle Swarm Optimization to generate an optimal test suite [94]. HABC supports variable interaction with a strength of 

up to t ≤ 6.  

The GAMIPOG strategy, as described in [95], is designed to support variable interaction strength, including 

higher interaction strengths up to t ≤ 5. GAMIPOG is a deterministic approach that combines the features of the Genetic 

Algorithm and its predecessor, the MIPOG strategy, to generate an optimal test suite. HABCSm [96] ensures both 

uniform and variable interactions with a strength (t) not exceeding 6. It employs the mechanisms of the Artificial Bee 

Colony with Particle Swarm Optimization to create test cases. TTSGA [97] utilizes the Ant Colony Algorithm to handle 

variable interaction strengths through three components: the VS-Tuple generator, search space generator, and test case 

generator. It's important to note that TTSGA is designed to work with interaction strengths up to t=6. VS-TACO [98] can 

produce variable interaction strengths up to t=4. It achieves this using Ant Colony Optimization and incorporates 

Mamdani fuzzy logic to determine the number of ants and select the most suitable search space technique. The analysis of 

variable interaction-based combinatorial t-way testing strategies is presented in Table 6. 
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Table 6 Analysis of variable interaction-based combinatorial t-way testing strategies 

Literature Prospective features 

Limitation(s) Strategy’s 

Name 
Reference Approach 

t-way 

strength 

Support 

Constraint Seeding Search-based 

GVS_CONS

T 
[87] OTAT t ≤ 5 ✓ X Computational 

Handle one interaction 

strength and lacks support for 

metaheuristic-based, and 

seeding 

TSG [88] OTAT t ≤ 3 X X Metaheuristic 

Handle one interaction 

strength and lacks support for 

seeding and constraints 

ATLBO [89] OTAT t ≤ 4 X X Metaheuristic 

Handle one interaction 

strength and lacks support for 

seeding and constraints 

GS [8] OTAT t ≤ 20 X X Metaheuristic 

Handle two interactions 

strength and lacks support for 

seeding and constraints 

ABCVS [30] OTAT t ≤ 6 X X Metaheuristic 

Handle two interactions 

strength and lacks support for 

seeding and constraints 

VCS [90] OTAT t ≤ 6 X X Metaheuristic 

Handle one interaction 

strength and lacks support for 

seeding and constraints 

VS-MGS [91] OTAT t ≤ 6 X X Metaheuristic 

Handle one interaction 

strength and lacks support for 

seeding and constraints 

Const-

TTSGA 
[92] OTAT t ≤ 4 ✓ X Metaheuristic 

Handle two interactions 

strength and lacks support for 

seeding 

SCAVS [93] OTAT t ≤ 6 X X Metaheuristic 

Handle one interaction 

strength and lacks support for 

seeding and constraints 

HABC [94] OTAT t ≤ 6 X X Metaheuristic 

Handle two interactions 

strength and lacks support for 

seeding and constraints 

GAMIPOG [95] OPAT t ≤ 5 X X Metaheuristic 

Handle one interaction 

strength and lacks support for 

seeding and constraints 

HABCSm [96] OTAT t ≤ 6 X X Metaheuristic 

Handle two interactions 

strength and lacks support for 

seeding and constraints 

TTSGA [97] OTAT t ≤ 6 X X Metaheuristic 

Handle one interaction 

strength and lacks support for 

seeding and constraints 

VS-TACO [98] OTAT t ≤ 4 X X Metaheuristic 

Handle one interaction 

strength and lacks support for 

seeding and constraints 

 

4.3 Input-Output-Based Strategies 

To the best of the author's knowledge, only two strategies have been identified in the literature that support input-output-

based relations, such as CTJ and AFA. The CTJ [99] is incorporated into the Jaya algorithm as a metaheuristic technique 

for generating a test list based on Input-Output relationships. It's important to note that CTJ is limited to handling 

relationships of up to 60. moreover, the AFA strategy is applied within the Adaptive Firefly algorithm to handle input-

output relationships involving as many as 100 interactions [100]. AFA combines test cases relevant to the generation of t-

way test suites by incorporating the elitism operator within the selected firefly algorithm. The analysis of input-output-

based combinatorial t-way testing strategies is presented in Table 7. 
 

Table 7 Analysis of input-output-based combinatorial t-way testing strategies 
Literature Prospective features 

Limitation(s) Strategy’s 

Name 
Reference Approach 

t-way 

strength 

Support 

Constraint Seeding Search-based 

CTJ [99] OTAT R<=60 X X Metaheuristic 

Handle one interaction strength and 

lacks support for seeding and 

constraints 

AFA [100] OTAT R<=60 X X Metaheuristic 

Handle one interaction strength and 

lacks support for seeding and 

constraints 
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5. Analysis Discussion 
In this section, the focus will be on presenting the principal findings of our investigation into the combinatorial interaction 

testing strategies for test case generation as conducted in the literature. Following this, we will discuss the challenges, 

strengths, and limitations of our study. Lastly, we will outline future research directions around combinatorial interaction 

testing. 
 

5.1 Principal Findings 

In this comprehensive scoping review, we undertake an in-depth exploration, categorization, and analysis of 

combinatorial interaction testing techniques. Our examination of the existing literature highlights the combinatorial 

perspective of these strategies, showcasing their potential applicability across several key factors, including literature-

based, approach-based, interaction-based, support-based, and search-based features. 
  
5.1.1 Analysis of Strategy’s Literature-Based 

The year of publication of a research paper is a critical aspect of the production of academic research. This information is 

typically found on the first page of a paper and provides a clear indication of the time frame in which the research was 

conducted. Knowing the year of publication is important for several reasons [101]. It helps other scholars determine the 

relevance and currency of the research. Research in combinatorial t-way testing is rapidly evolving, and new 

developments and discoveries can quickly render the existing strategies. However, by knowing the year of publication, 

other researchers can quickly determine whether the findings reported in the research work are still relevant and useful. 

The authors have reviewed literature from the years 2013 to 2023 and presented it in a table format as presented earlier in 

Section 4. The review of combinatorial t-way strategies started in 2013, so the literature provides a comprehensive 

overview of the research conducted over eleven years and highlights the key findings of the strategies. The authors have 

taken care to ensure the accuracy of the years of publication, making it a useful resource for other researchers to stay 

current with the latest research and to make informed decisions about their work. Consequently, Figure 4 shows the 

literature analysis of detailed years of all combinatorial t-way strategies publications reviewed. The most productive years 

of publication are 2020, 2021, 2019, and 2018 in which they produced 21%, 15%, 14%, and 12% strategies respectively. 

In 2015 and 2017 each produced 9% and 7% only while 2022, 2016, 2014, and 2013 both produced 5% strategies. 

However, in 2023 only 2% of the strategy was produced. 

 

 
Fig. 4 Strategies Literature-Based Analysis 

 

5.1.2 Analysis of Strategy’s Approach-Based 

Approach-based analysis is important in a review as it provides a structured method for creating test cases and improving 

the reliability of the system being tested. This approach helps to identify potential issues and bugs and reduces the time 

and effort required for testing. As mentioned earlier, the approach used in the combinatorial t-way strategies can be 

categorized into two main types: one-test-at-a-time (OTAT) or one-parameter-at-a-time (OPAT). 
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Fig. 5 Strategies Approach-Based Analysis 
 

More specifically, Figure 5 shows that 2021, 2019, 2015, 2017, 2022, 2014, 2016, and 2023 have produced the highest 

number of OTAT strategies and zero OPAT. Even though, in 2020 OPAT is more competitive producing 50% of OTAT. 

The OPAT approach took more attention in 2020, 2013, and 2018 which have each produced four, three, and two t-way 

strategies respectively. Despite the research interest on the rise, it has been found that in 2013 none of the strategies were 

adopted for the OTAT approach. From these results, it is evident that greater attention was directed towards the OTAT 

approach, whereas the OPAT approach received less focus. However, the OPAT approach plays a significant role by 

selecting a representative value from each parameter, resulting in the generation of test cases based on these chosen 

values. This method yields a smaller set of test cases. 
 

5.1.3 Analysis of Strategy’s Search-Based 

Analyzing the search-based aspect of a t-way strategy is significant for evaluating its effectiveness, identifying 

optimization opportunities, and determining its practical applicability. It is a natural phenomenon that search-based t-way 

strategies excel in this aspect. According to Figure 6, it is evident that metaheuristic-based approaches dominated from 

2014 to 2022. Computational-based approaches were produced every year except in 2016, 2019, 2022, and 2023. Hybrid 

metaheuristic approaches began to emerge from 2018 to 2023. Unfortunately, hyper-heuristic approaches received less 

attention, being mentioned only in 2016 and 2017. These results highlighted that the hybridization of metaheuristic and 

hyper-heuristic methods is not frequently utilized in current t-way testing strategies. Consequently, combining two or 

more metaheuristic algorithms can enhance overall search capabilities by offsetting the limitations of one algorithm with 

the strengths of others. 
 

 
 

Fig. 6 Strategies Search-Based Analysis 

5.1.4 Analysis of Strategy’s Interaction-Based 

Analyzing the interaction-based aspect of a t-way strategy is significant for evaluating coverage, reducing test cases, 

assessing fault detection capability, and determining adaptability to system changes. This analysis provides valuable 

insights into the strategy's effectiveness and suitability for different testing scenarios. As for the interaction-based 

analysis, knowing that only 58 combinatorial strategies were able to be identified from 2013 until 2023. Figure 7 displays 

the number of interactions supported by uniform, variable, and IOR for the years. 
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Figure 7: Strategies interaction-based analysis 

 

Figure 7 suggests that uniform interaction strength was the most favored type of interaction over these periods. Variable 

interaction strength was the second-most favored, while IOR came in last. Combinatorial t-way strategies supporting 

uniform interaction were present each year. In contrast, variable interaction strength was absent in 2013, 2015, 2016, and 

2023. Additionally, IOR-based strategies only made an appearance in 2020. Furthermore, these results indicate that 

insufficient attention is presently devoted to testing software configuration systems necessitating the execution of multiple 

configurations (i.e., variable interaction strength) and/or software configuration systems requiring the execution of 

specific parameters that exert the most significant influence on a given output, aiming to prevent the duplication of test 

cases (i.e., IOR interaction). 
 

5.1.5 Analysis of Strategy’s Support-Based 

In this situation, the attention was confined to two forms of support: constraint support and seeding support. These two 

types of support were deemed relevant and significant in the context of t-way testing strategies. By focusing solely on 

these two forms of support, the researcher can keep their focus narrow and specific, leading to a deeper understanding of 

their influence and importance. The sample test data may include combinations that are impossible or undesirable, so 

constraint support is required to optimize the test suite size. Seeding support is also necessary to guarantee the use of 

specific combinations and to establish boundaries for the test, resulting in improved software quality. 

In Figure 8, support for constraints is notably dominant in almost every year except for 2016, 2022, and 2023. 

However, the number of strategies supporting constraints is limited. Specifically, only 2013 and 2020 saw the presence of 

two strategies each, while in the remaining years, there was only one strategy each.    However, it is worth noting that 

none of the strategies in the figure possess the feature of seeding support. This indicates that there is no possibility to 

initiate the system with a predetermined starting state, which is also a limitation of the existing t-way strategies, e-ven 

though, in 2012 there is a popular computational t-way strategy known as TTG which supports both seeding and 

constraint [102]. 
 

 
Figure 8: Strategies Support-Based Analysis 

 

5.2 Challenges, Strengths and Limitations 

Notably, we thoroughly identify 58 existing t-way strategies within this period; two main approaches for generating test 

cases, two support methods for enhancing software quality and reducing test case size, three types of interaction support, 

and four primary search methods for the effectiveness of test case generation. This scoping review contributes a carefully 

documented classification and a rigorous reviewing framework, facilitating the evaluation of existing combinatorial 

interaction testing strategies for test case generation.  
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In terms of challenges encountered in combinatorial interaction testing, our findings suggest that generating test cases 

should incorporate not only traditional t-way testing methods but also advanced and non-functional techniques. 

Researchers' efforts assist testers in ensuring data quality and facilitating the creation of efficient test cases and 

automation tools. These tools validate that each combination of parameter values for every t-way combination is 

addressed by at least one test case, ultimately producing an optimal test suite. Table 8 outlines the challenges in 

combinatorial interaction testing, providing descriptions and proposed solutions based on research findings. 
 

Table 8 Combinatorial interaction testing challenges and proposed solutions 

Challenge Description Proposed solution 

Interaction 

Coverage 

Ensuring all necessary interactions are covered 

without an explosion in the number of test cases. 

T-way techniques can dynamically adjust the level 

of interaction coverage based on testing 

requirements and resource availability. 

Scalability 

With the increase in the number of parameters 

and values, the number of possible combinations 

grows exponentially, making it challenging to 

generate and execute all possible test cases within 

a reasonable time frame and with available 

resources. 

Use incremental approaches where testing starts 

with a small number of parameters and gradually 

includes more, reducing the complexity at each 

step. For instance, adopting OTAT or OPAT 

approach in generating test cases. 

Test Case 

Minimization 

Finding the smallest possible set of test cases that 

still provides maximum coverage of the 

interactions is a difficult optimization problem. 

Minimizing the number of test cases while 

ensuring comprehensive testing requires 

sophisticated algorithms. Methods such 

metaheuristic-based, hybridization, or even hyper 

heuristic method. 

Handling Constraint 

The selected test data might encompass 

undesirable or impractical combinations of 

parameter values. 

There is a need for adherence to constraint support. 

Consequently, this approach provides a software 

tester with the advantage of excluding certain test 

cases when warranted. 

Handling Seeding 
Certain combinations of parameter values must be 

incorporated in the testing processes. 

There is a need for adherence to seeding support. 

Consequently, this approach provides a software 

tester with the advantage to incorporating 

necessary test cases into the final test list. 

Multiple Interaction 

Methods 

Combining more than one interaction method to 

create a comprehensive testing strategy for testing 

different configurations. 

Integration of uniform and variable interaction will 

help for testing CA, MCA, and VCA notations. 

Integration of uniform, variable, and IOR 

interaction will help for testing CA, MCA, VCA, 

IOR notations. 

Tool Support 

There is a need for vigorous and user-friendly 

tools that can support the various aspects of 

combinatorial interaction testing. 

Combinatorial interaction test data generator, also 

known as t-wat testing strategy. 

Test Case 

Redundancy 

Redundant test cases can waste resources and 

time without adding new information or coverage. 

Use optimization techniques such metaheuristics 

to minimize the test suite while maximizing 

coverage, ensuring no redundant test cases. 

High Computational 

Cost 

Creating and checking every combination gets 

costly, especially with more parameters and 

values. 

Implement metaheuristics or hyper heuristic 

methods. 

 

In terms of the strengths and limitations of our research, our conducted study offers a comprehensive overview of the 

current state of research on existing combinatorial t-way testing strategies, with a focus on perspective features. However, 

it's important to acknowledge that conducting a scoping review involves a predominantly manual process, which 

introduces the possibility of missing some relevant studies. To mitigate this risk, we closely adhered to the PRISMA 

guidelines, widely recognized as a leading framework for conducting and reporting high-quality reviews. 

Additionally, our search for relevant terms was limited to five strong search terms such as combinatorial testing, testing 

strategy, t-way testing, test case generation, final test suite, and covering array, aiming to yield desired results. We believe 

these approaches contribute to the study's fullness. On the other hand, like any chosen research method, ours has inherent 

limitations. This research focused primarily on popular platforms such as Web of Science, Google Scholar, Springer, 

ResearchGate, and IEEE Explore to search for and extract relevant primary studies. While these platforms are reputable, 

it's possible that other platforms could also offer relevant studies. However, we selected these platforms based on their 

established reputations. 

 

5.3 Future Research Directions 

The area of combinatorial t-way testing strategies is still relatively new and constantly evolving with innovative ideas and 

applications. These are some potential research directions in this exploration: 

 Simultaneous use of constraint and seeding support to reduce the number of generated test data and improved the 

software quality. Integrating both seeding and constraint support within either OTAT or OPAT approach is 
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crucial. Particularly, the OPAT approach as it involves selecting a representative value from each parameter and 

generating test cases based on these chosen values. Consequently, the method will yield a smaller set of test 

cases, assuming that managing the risk of interaction among non-representative components while ensuring the 

completion of system testing using representative values remains achievable within a reasonable budget. 

 Implementing metaheuristic hybridization or hyper heuristic methods to enhance either/both uniform, variable 

or/and IOR interaction by incorporating seeding and support. 

 The Combinatorial Interaction Test Data Generator, also known as the t-way testing strategy, supports all types of 

interactions, including uniform, variable, and IOR. 

 

6. Conclusion 
In summary, this paper provides an overview of the current state-of-the-art of existing combinatorial t-way strategies, 

emphasizing the strengths and limitations of each strategy. To achieve our goals, we have identified 58 existing 

combinatorial t-way testing strategies within 2013 to 2023 which are evaluated into various perceptions that include the 

literature-based, approach-based, search-based, interaction-based, and support-based. In the literature-based, the most 

productive years of publication are 2020, 2021, 2019, and 2018. In the approach-based category, OTAT is dominant and 

receives more attention than OPAT. In the search-based category, most strategies adopt metaheuristics methods, and then 

computational methods, however, less attention is given to hybridization and hyper-heuristic methods. In the interaction-

based category, uniform interaction is the most prominent strategy, and then variable t-way strategy, unfortunately, only 

two of them support IOR. In the support-based category, less consideration is given, only ten strategies support 

constraints, but none of them supports both or seeding. 
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