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Abstract 
In this paper, we have developed the fourth order iterative method to find the simple roots of the non-linear equations that 

arise in engineering and scientific fields. Through theoretical derivatives and practical examples, we illustrate how to 

evaluate the simple roots of non-linear equations. The proposed scheme demonstrates efficient results as well as improves 

the computational performance. The study concluded by discussing potential applications and implications for future 

research in simple root finding methods. 
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1. Introduction 
One of the most important problems in engineering and sciences is solving the non-linear equations. The non-linear 

equation’s solution H(q) = 0 has been one of the most investigated topics in applied mathematics, which produces a vast 

literature. To find the exact analytical solution of certain problems is very difficult or impossible. Iterative methods are 

techniques that make successive approximations to arrive at a more accurate solution. When a problem is too difficult to 

solve directly (analytically), we use a step-by-step process in which the method gradually gets closer to the correct answer 

over time. So, the main part is that the complexity of certain problems leads us to use approximation techniques instead of 

exact solution. The best illustration of iterative procedures is Newton’s method [1], which is described as, 
 

𝑞𝑛+1 = 𝑞𝑛 −
𝐻(𝑞𝑛)

𝐻′(𝑞𝑛)
, 𝑛 = 0,1,2 … … … (1) 

 

The Newton’s method exhibits quadratic convergence. To increase Newton’s method’s convergence order from quadratic 

to cubic, numerous researchers [2-5] have contributed to the development of iterative methods. Some of the well-

established cubically convergent methods include Halley’s method [2], Euler’s method [3], the super-Halley method [4], 

and the Weekaroon-Fernando method [5], among others. Out of these, all methods, except for the Weekaroon-Fernando 

method, involve second-order derivatives. From 1964 and till now, researchers [6-10] developed fourth-order methods to 

determine the roots of non-linear equations, including those proposed by Traub and Ostrowski [6], Chun and Ham [7], 

Cordero and Torregrosa [8], Singh and Bhalla [9], and Kanwar et al. [10]. Among these, Kanwar et al. introduced a 

method incorporating second-order derivatives, while the remaining approaches utilized first-order derivatives. Obtaining 

the second-order derivative can sometimes be challenging. Considering this, recent studies [11-13] have focused on 

developing methods that do not require second order derivatives. In this context, we propose a novel fourth-order method. 

The remainder of the paper is structured as follows: In section (2), we introduce a fourth order scheme for solving 

non-linear equation and analyses their convergence. Section (3) focuses on evaluating the method’s numerical 

performance in comparison to other current methods. Lastly, the conclusion is presented in Section (4). 
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2. The Proposed Method and its Convergence Analysis 
Using Newton’s approach as a first step, the following iterative scheme is developed. The expression that is iterative, 
 

𝑤𝑛 = 𝑞𝜂 −
𝐻(𝑞𝑛)

𝐻′(𝑞𝑛)
,         

  𝑞𝑛+1 = 𝑞𝑛 −
𝐻2(𝑞𝑛) − 2𝐻2(𝑤𝑛) + 𝐻(𝑤𝑛)𝐻(𝑞𝑛)

𝐻(𝑞𝑛) − 𝐻′(𝑞𝑛)
, 𝑛 = 0,1,2,3, … … … (2) 

 

There are three fractional evaluations for each member of family (2) each iteration. The following results indicate that the 

family is optimal because of its four order of convergence.  
 

Theorem: In an open interval I, let H: I ⊂ R → R be a real sufficiently differentiable function, and let α ∈ I be a simple 

root of H(q) = 0. By being its error equation, if e_n   is close enough to α, the iterative family (2) converges to α with 

order of convergence four. 
 

𝑒𝑛+1 = (5𝑐2
3 − 𝑐2𝑐3)𝑒𝑛

4 + 𝑜(𝑒𝑛
5) 

 

Proof: Suppose α be a simple root of function H such that H(α) = 0 and e_n = q_n − α where  e_n be the error at  q_n. We 

have H(q_n) and H′(q_n) by expanding Using Taylor series about ′α ′ because H is sufficiently differentiable. 
 

  𝐻(𝑞𝑛) = 𝐻′(𝛼) (𝑒𝑛 + 𝐶2𝑒𝑛
2 + 𝐶3𝑒𝑛

3 + 𝐶3𝑒𝑛+0
4 (𝑒𝑛

5)) , … … … (3) 

 

And, 
 

  𝐻′(𝑞𝑛) = 𝐻′(𝛼)(1 + 2𝐶2𝑒𝑛 + 3𝐶3𝑒𝑛
2 + 4𝐶4𝑒𝑛

3 + ⋯ 2 ⋅) … … … (4) 
 

Where, 𝐶𝑛 =
1

𝑛

𝐻(𝑛)(𝛼)

𝐻1(𝛼)
, 𝑛 = 0,1,2,3 … 

 

By dividing (3) and (4), we have 
 

𝐻(𝑞𝑛)

𝐻′(𝑞𝑛)
= 𝑒𝑛 − 𝐶2𝑒𝑛

2 + 2(𝐶2
2 − 𝐶3)𝑒𝑛

3 + 0(𝑒𝑛
4) 

 

Now for 𝑤𝑛 − 𝛼 = 𝑒𝑛 −
𝐻(𝑞𝑛)

𝐻′(𝑞𝑛)
 , we have 

 

𝑤𝑛 = 𝛼 + 𝑐2𝑒𝑛
2 + 2(𝑐2

2 + 𝑐3)𝑒𝑛
3 + 𝑜(𝑒𝑛

4) … … … (5) 
 

Expanding H(w_n) with the Taylor series, we have 
 

𝐻(𝑤𝑛) = 𝐻′(𝛼)[𝑤𝑛 − 𝛼 + 𝐶2(𝑤𝑛 − 𝛼)] + 𝑜((𝑤𝑛 − 𝛼)3)𝐻′(𝛼)
= [𝐶2𝑒𝑛

2 + (2𝐶3 − 2𝐶2
2)𝑒𝑛

3 + (5𝐶2
2 − 7𝐶3𝐶2 + 3𝐶4)𝑒𝑛

4] + 𝑜(𝑒𝑛
5) … … … (6) 

 

Using (3), (4) and (6), one can get 
 

𝐻2(𝑞𝑛) − 2𝐻2(𝑤𝑛) + 𝐻𝑤𝑛𝐻(𝑞𝑛) = 𝑒𝑛
2 + 3𝐶2𝑒𝑛

3 + (−2𝐶2
2 + 4𝐶3)𝑒𝑛

4 + 0(𝑒𝑛
5) … … … (7) 

 

And by using (3) and (4), one can obtain, 
 

𝐻(𝑞𝑛)𝐻′(𝑞𝑛) = 𝑒𝑛 + 3𝐶2𝑒𝑛
2 + (2𝐶2

2 + 4𝐶3)𝑒𝑛
3 + 5(𝐶2𝐶3 + 𝐶4)𝑒𝑛

4 + 0(𝑒𝑛
5) … … … (8) 

 

In the view of equation (7), and (8), we have the error equation of (2), 
 

𝐻2(𝑞𝑛) − 2𝐻2(𝑤𝑛) + 𝐻(𝑤𝑛)𝐻(𝑞𝑛)

𝐻(𝑞𝑛)𝐻′(𝑞𝑛)
= 𝑒𝑛 − 4𝐶2

2𝑒𝑛
3 + (23𝐶2

3 − 15𝐶2𝐶3)𝑒𝑛
4 + 0(𝑒𝑛

5) … … … (9) 

 

Now using q_n and (9), we have the following final error equation. 
 

𝑞𝑛+1 = 𝑞𝑛 −
𝐻2(𝑞𝑛) − 2𝐻2(𝑤𝑛) + 𝐻(𝑤𝑛)𝐻(𝑞𝑛)

𝐻(𝑞𝑛)𝐻′(𝑞𝑛)
= 𝑞𝑛 − (𝑒𝑛 − 4𝐶2

2𝑒𝑛
3 + (23𝑐2

3 − 15𝑐2𝑐3)𝑒𝑛
4) … … … (10) 

 

On subtracting α from both sides of equation (3) and using 𝑞𝑛+1 − 𝛼 = 𝑒𝑛+1, we get 

𝑒𝑛+1 = (5𝐶2
3 − 𝐶2𝐶3)𝑒𝑛

4 + 0(𝑒𝑛
5) … … … (11) 
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3. Numerical Examples 
This section, some real-life numerical example i.e., Continuous stirred tank reactor and academic issues are used to check 

the effectiveness of the suggested approach. The results of the evaluation of the suggested method’s effectiveness are 

shown in Tables 1-2. All computations were performed using Mathematica software version 11.1.1, with a halting 

condition of 
 

|𝑞𝑛+1 − 𝑞𝑛| < 𝑒, 
 

Where, 𝑒 = 10−300was used. Furthermore, this formula was used to estimate the convergence order in computation 

(ACOC): 
  

𝑝 ≈
𝑙𝑛 |

𝑞𝑛+2 − 𝑞𝑛+1
𝑞𝑛+1 − 𝑞𝑛

|

𝑙𝑛 |
𝑞𝑛+1 − 𝑞𝑛

𝑞𝑛 − 𝑞𝑛 − 1|
. 

 

The notation m(±n) represents m ×10(±𝑛), which appears throughout the table. We have used the fourth-order approach, 

known as SM and suggested by Soleymani [14], to allow for a meaningful comparison. It is defined as follows: 
 

𝑤𝑛 = 𝑞𝑛 −
𝐻(𝑞𝑛)

𝐻′(𝑞𝑛)
, 𝑞𝑛+1

= 𝑤𝑛 −
𝐻(𝑞𝑛)2

𝐻(𝑞𝑛)2 − 2𝐻(𝑞𝑛)𝐻(𝑤𝑛)

𝐻(𝑤𝑛)

𝐻′(𝑞𝑛)
(1 +

𝐻(𝑤𝑛)2

𝐻(𝑞𝑛)2 ) (
1 + 𝐻(𝑤𝑛)2

𝐻′(𝑞𝑛)2 ) (1 +
𝐻(𝑞𝑛)2

𝐻′(𝑞𝑛)2) … … . (12) 

 

Furthermore, we have utilized the Chun approach (CM) [13] for the fourth-order method. 
  

𝑤𝑛 = 𝑞𝑛 −
2

3

𝐻(𝑞𝑛)

𝐻′(𝑞𝑛)
, 𝑞𝑛+1 = 𝑞𝑛 +

𝐻′(𝑞𝑛) + 3𝐻′(𝑤𝑛)

2𝐻′(𝑞𝑛) − 6𝐻′(𝑤𝑛)

𝐻(𝑞𝑛)

𝐻′(𝑞𝑛)
… … … (13) 

 

Example 3.1 Continuous Stirred Tank Reactor 

Examine a CST reactor that is isothermal. If U and Γ are the components fed into the reactor, the reactor will create the 

following reaction scheme (see [15]): 
 

                                                                   U + Γ → W. 

                                                                   W + Γ → X. 

                                                                    X + Γ → Y. 

                                                                    Y + Γ → Z. 
 

Douglas characterized as a fundamental feedback control mechanism (see [16]). The following equation was taken into 

consideration for the reactor’s transfer function: 
 

𝑘𝑐 ×
2.98(𝑞 + 2.25)

𝑞4 + 11.50𝑞3 + 47.49𝑞2 + 83.06325𝑞 + 51.23266875
= −1, 

 

where the proportional controller’s gain is denoted by Kc. The worth of Kc that cause the zeros of the transfer function to 

have a negative real component must be chosen for the control system’s stability. Let us consider that Kc = 0, then the 

roots of the nonlinear equation are obtained from the singularities of the open-loop transfer function: 
 

                                      𝐻1(q) = 𝑞4 + 11.50𝑞3 + 47.49𝑞2 + 83.06325q + 51.23266875, 
  
where actual root is − 0.000006167. Taking the initial guess q _0 = −1 gives the numerical calculations presented in Table 1. 
 

Table 1 Continuous Stirred Tank Reactor 

Method Iteration 𝒒𝒏 − 𝒒𝒏−𝟏 𝑯(𝒒𝒏) 𝝆 

SM 

2 

3 

4 

3.31(-6) 

6.85(-28) 

1.26(-114) 

-27.48 

-5.69(-31) 

-1.05(-107) 

4.00 

4.00 

4.00 

CM 

2 

3 

4 

1.33(-8) 

4.27(-40) 

4.46(-166) 

1.11(1) 

3.55(-33) 

3.71(-159) 

4.00 

4.00 

4.00 

PM 

2 

3 

4 

3.78(-12) 

1.62(-57) 

5.51(-239) 

-3.14(5) 

-1.34(-50) 

-4.57(-232) 

4.00 

4.00 

4.00 
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Example 3.2 Consider a non-linear equation 
 

𝐻2(𝑞) = 𝑠𝑖𝑛2(𝑞) − 𝑞2 + 1 
 

The actual solution of the equation is about α ≈ 1.40494…, and we start with an initial guess of 3.5. This equation is 

difficult to solve directly because it includes both trigonometric and polynomial terms. To find the solution, we use 

numerical methods, which involve repeating calculations until we get a good approximation. 

Choosing a good starting guess helps the method find the correct answer more quickly. These kinds of problems are 

common in science, engineering, and math. Methods like Newton Raphson, bisection, and secant help find solutions to 

such equations. The accuracy of these methods depends on the starting guess, how the function behaves, and when we 

decide to stop the calculations. 
 

Table 2  𝑠𝑖𝑛2(𝑞) − 𝑞2 + 1 

Method Iteration 𝒒𝒏 − 𝒒𝒏−𝟏 𝑯(𝒒𝒏) 𝝆 

SM 

2 

3 

4 

 

d 

 

d 

 

d 

CM 

2 

3 

4 

1.75(-1) 

1.01(-3) 

2.41(-12) 

-5.00(-1) 

-2.51(-3) 

-5.99(-12) 

 

3.99 

PM 

2 

3 

4 

1.37(-1) 

4.51(-4) 

9.71(-14) 

-3.81(-1) 

-7.12(-3) 

-2.41(-13) 

 

4.00 

 

4. Conclusion 
We have introduced a simple and different techniques to develop an optimal fourth order method for finding the simple 

roots which does not requires a second order derivatives and uses only three function evaluation such as, 

(𝐻(𝑞𝑛), 𝐻′(𝑞𝑛), 𝐻(𝑤𝑛)) per full iteration. We have used the Newton’s methods for solving the simple roots for solving 

the linear equations. Numerical examples and figures illustrate the practical usefulness of these methods. As the need for 

the reliable and efficient method to solve complex equation grows, these techniques are recommended for solving 

problems in area like numerical analysis, optimization and the computational sciences. 
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