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Abstract 
Evapotranspiration (ET) plays a critical role in the global water cycle, significantly impacting water budgets, climate 

dynamics, and agricultural systems. This complex process results from interactions among the atmosphere, soil, and 

plants, involving both chemical and biological processes such as photosynthesis and CO₂ emissions, alongside the 

physical transformation of water between liquid and vapour phases. Due to these interactions, estimating ET accurately 

remains challenging, particularly in simulating and integrating all associated processes within a single model. ET can be 

measured with physical devices, like eddy covariance systems and lysimeters, or estimated using physical models and 

equations informed by measurements, remote sensing data, or a combination of these sources. This paper provides a 

comprehensive review of the theoretical foundations of ET estimation, observing techniques, and algorithms for 

estimating ET across diverse landscapes using remotely sensed data. It also addresses the uncertainties and limitations of 

current estimation methods, reviewing the strengths and constraints of various approaches. Additionally, this paper 

evaluates existing ET remote sensing products, examining the foundational equations and methods behind their 

development. Finally, recommendations are offered to enhance future ET estimations, including combining multiple 

methods to improve the accuracy and reliability of ET flux assessments across varied environments. 
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1. Introduction 
The rapid global rise in food demand is exerting intense pressure on food systems to maximize agricultural yields, even as 

freshwater resources become increasingly scarce. This critical challenge has spurred a shift toward sustainable practices 

and optimized agricultural operations, with a focus on using water more efficiently. In this context, effective irrigation 

management is fundamental to sustainable agriculture, largely dependent on accurately assessing crop water needs. A key 

indicator of these requirements is evapotranspiration (ET), which measures the water vapor transferred from land to the 

atmosphere through both soil evaporation and plant transpiration (Ghiat et al., 2021). ET, defined as the transfer of water 

from bare soil and open water sources like rivers and lakes (evaporation), as well as vegetated surfaces (transpiration from 

plant leaves) to the atmosphere in the form of water vapor (Allan, 1998), plays a pivotal role in the water cycle. The 

global water cycle itself is a complex system involving various physicochemical processes, such as condensation, 

groundwater flow, infiltration, plant uptake, precipitation, runoff, sublimation, and water vapor transport (Allan et al., 

2020), and it is further influenced by human activities, including water withdrawals, soil moisture use for livestock, crop 

irrigation, and forestry (Abbott et al., 2019). Figure 1, sourced from Wang et al. (2012), illustrates the ET process, 
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encompassing evaporation from bare soil, water bodies, and leaf surface droplets, as well as transpiration from leaves. As 

the second largest component of the terrestrial water cycle after precipitation, ET is significant in that it returns over 60% 

of precipitation back to the atmosphere, establishing a major constraint on water availability at the land surface. ET also 

constitutes a critical energy flux, as it consumes more than half of the solar energy absorbed by land surfaces (Trenberth, 

2009). Therefore, accurate estimation of ET is not only crucial for meeting the increasing competition for limited water 

supplies and for reducing irrigation project costs, but it is also essential for understanding potential changes in the global 

hydrological cycle under various climate change scenarios. The ability to project shifts in water availability with changes 

in ET patterns is a key aspect of climate-resilient agriculture, enabling policymakers, water managers, and farmers to 

make informed decisions to sustain agricultural productivity and water security in the face of rising global food demands 

(Teuling, 2009). 
 

 
Fig. 1 Transpiration from dry leaves and evaporation from water, surface leaves, and soil as evapotranspiration 

 

Accurately estimating crop water requirements is vital for optimizing irrigation scheduling, ensuring that water is applied 

at the right time and in the correct amount. By understanding evapotranspiration (ET) rates, growers can meet cultivation 

goals, boost water-use efficiency, increase crop yields, and lower both energy consumption and environmental emissions. 

This critical role of ET exemplifies the interconnectedness within the water, energy, and food (WEF) nexus, where each 

element impacts the others. The WEF nexus provides a holistic framework to evaluate interdependencies across food, 

water, and energy systems, highlighting both resource trade-offs and synergies. This approach enables a more efficient 

use of resources, reducing negative environmental impacts across the board. Consequently, adopting a WEF nexus 

perspective is essential for sustainable agricultural intensification as it addresses the rising demand for nutritious food, 

conserves both water and energy, and mitigates environmental degradation. Evapotranspiration models have evolved from 

Penman’s initial model, which relied solely on external physical drivers, to Monteith’s improved version that includes 

physiological characteristics. Simplified adaptations of the Penman–Monteith equation have also been developed to 

require fewer input data, making them more adaptable to diverse meteorological and physiological conditions. Selecting a 

model that closely matches the characteristics of the system under study is crucial for accuracy, which can be enhanced 

further through model parameterization based on direct measurements tailored to the target system. 

There are multiple methods for estimating ET, from approaches that measure evaporation from water surfaces to 

various potential and actual ET estimations. However, many focus on ET from a single underlying surface, such as open 

water, bare soil, or vegetation, often overlooking the broader water balance. This single-surface approach treats ET as a 

static value rather than a dynamic process within the hydrological cycle. Recent advancements in remote sensing now 

enable ET estimation on a basin scale, although this technology often provides only instantaneous, rather than continuous, 

data and remains susceptible to external conditions that can limit accuracy. In contrast, actual ET estimates based on 

hydrological models consider the influence of both water and energy dynamics and can be calculated across various 

spatial and temporal scales, making them well-suited for comprehensive water resource assessment and management. 

Multiple ET estimation methods, developed from existing hydrological models, each have unique data input 

requirements; however, comparative studies of their output accuracy remain limited. This review aims to bridge this gap 

by consolidating ET models and measurement techniques, evaluating their applicability to different agricultural 

environments, and examining the role of ET estimation within the WEF nexus. ET serves as a vital link between the 

energy and water budgets in the hydrological cycle, with ET modelling initially pioneered by Penman, who developed a 

model based solely on external physical drivers. Monteith’s later enhancement incorporated plant physiological factors, 

and simplified versions of the Penman–Monteith equation have since emerged to minimize data demands while 

preserving essential functionality. This review aims to assess key techniques and empirical models for estimating ET, 

discussing their relevance across diverse agricultural systems, and highlighting measurement techniques for critical 

parameters such as leaf area index and surface leaf temperature, as well as direct ET measurement methods. 

 

2. Basic Theory of Evapotranspiration 
Evapotranspiration (ET) comprises two processes: evaporation, where liquid water vaporizes from surfaces, and 

transpiration, where water vaporizes from plant tissues and is transferred to the atmosphere. Evaporation is driven by the 
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difference in vapor pressure between the water surface and ambient air (Allen et al., 1998). Transpiration involves water 

uptake from the soil, its movement through plant tissues, and eventual release as vapor through stomata in the leaves. This 

process is essential for plant growth, as it enables nutrient and mineral transport within the plant and provides a cooling 

effect necessary for survival. Meteorological factors, including solar radiation, air temperature, humidity, and wind speed, 

significantly influence both evaporation and transpiration, while crop characteristics and cultivation methods also affect 

transpiration. ET models, based on their theoretical approach, are generally classified into four categories: (i) mass 

transfer, (ii) temperature-based, (iii) radiation-based, and (iv) combination models that integrate both aerodynamics and 

energy balance (Xiang et al., 2020). Mass transfer models focus on aerodynamics, while temperature-based models, such 

as the Hargreaves and Samani model, rely solely on temperature inputs. Radiation-based models, like the Priestley–

Taylor equation, calculate ET based on energy balance. The combination models, exemplified by the Penman–Monteith 

model and its FAO56 modification for reference ET (ETo), incorporate both aerodynamic and energy balance 

components for a comprehensive ET estimation (Xiang et al., 2020). 
 

2.1 Evapotranspiration Measurement Methods  

Direct measurements of evapotranspiration are used for experimental purposes to calibrate and validate a certain model. 

All measurement tools need to be calibrated by a certain calibration coefficient to relate the measurement to reality. The 

devices used have a limited extent and present local point ET measurements. There are different types of devices used to 

measure ET such as; lysimeter, eddy covariance, energy balance Bowen ratio, etc. in additional to direct measurements of 

evapotranspiration, there are some techniques can be used to estimate the evapotranspiration. In this section we will 

discuss the most used devices for evapotranspiration measurements.  
 

2.1.1 Leaf Area Measurement Method 

Measuring evapotranspiration (ET), the combined water loss from soil evaporation and plant transpiration, is crucial for 

understanding water use efficiency, particularly in agricultural and natural ecosystems. The leaf area index (LAI), 

representing the total leaf area per unit ground area, serves as an essential metric in ET estimation because it directly 

influences transpiration rates. Larger LAI values indicate more leaf surface area for transpiration, which correlates with 

increased water loss through plant canopies. LAI measurements can be integrated into ET models to improve accuracy in 

assessing the transpiring surface area (Still et al., 2019). Direct LAI measurement techniques, although accurate, are often 

destructive as they involve harvesting leaves for examination. Indirect techniques are therefore preferred for continuous 

monitoring, as they non-destructively assess LAI based on radiation interception by the canopy. For instance, 

ceptometers, which measure photosynthetically active radiation (PAR) above and below the canopy, provide a cost-

effective approach for obtaining reliable LAI estimates, particularly in uniform canopies. Similarly, hemispherical 

photography, utilizing fisheye lenses to capture canopy structure, allows for the analysis of canopy density, position, and 

gap distribution, which are all factors impacting ET rates. The LAI-2200C leaf area meter by Licor, which assesses blue 

light interception, and image-based remote sensing techniques, which estimate LAI from vegetative indices, are also 

effective tools. By capturing LAI variations, these tools contribute to a refined understanding of ET, as LAI data can be 

integrated into multi-layer canopy models to depict internal resistance and net radiation changes across different canopy 

layers. Accurate LAI-based ET measurements can enhance water resource management by enabling precise irrigation 

scheduling and predicting crop water needs, ultimately supporting sustainable agricultural practices and resource 

conservation. 
  
2.1.2 Leaf Temperature Measurement Method 

Estimating ET using leaf temperature measurement is an effective approach that leverages the relationship between leaf 

surface temperature and transpiration rates. Since transpiration cools the leaf surface, a lower leaf temperature relative to 

the surrounding air typically indicates active transpiration under healthy growing conditions. Conversely, if leaf 

temperature equals or exceeds ambient temperature, it often signals crop stress or inadequate water availability. 

Measuring leaf temperature, therefore, provides critical insights into plant water use and stress levels, improving ET 

estimates by indicating the rate of gas exchange between the leaf and the atmosphere, which affects vapor concentration 

within the stomata. Thermocouples are a common tool for measuring leaf temperature, converting temperature changes on 

the leaf into electric signals. They are economical, lightweight, and have a quick response time, though their direct 

contact with the leaf can lead to inaccuracies as they may absorb solar radiation and heat by conduction (Yu et al., 2016). 

Infrared thermometers offer a contactless alternative, measuring the infrared energy emitted by a targeted leaf spot, 

transforming it into an electrical signal that provides high accuracy and fast response. However, their precision may be 

affected by environmental factors like dust and steam. Thermal infrared imaging, a more advanced option, captures two-

dimensional temperature gradients across larger areas using infrared detectors sensitive to wavelengths between 7–14 μm. 

These cameras can map temperature variations across extensive crop fields, enabling detection of ET differences at 

broader temporal and spatial scales than other methods. Though effective, this technique has limitations, including high 

equipment costs, and potential inaccuracies due to leaf emissivity and longwave radiation effects, especially under 

outdoor, variable conditions. Corrective software can mitigate some of these errors, but it is often complex and tailored to 

controlled environments, limiting widespread agricultural adoption (Tarnopolsky and Seginer, 1999). 
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2.1.3 Eddy Covariance Systems Method 

The eddy covariance (EC) method is a direct measurement technique for evapotranspiration (ET), using two primary 

instruments: an anemometer, which records wind direction and speed, and an infrared gas analyzer (IRGA), which detects 

air gas concentrations, such as water vapor. Together, these devices enable EC to measure sensible heat flux (H) and 

latent heat flux (λE) by analyzing variations in heat and moisture flux with vertical wind velocity, using rapid-response 

sensors operating at frequencies of 10 Hz or higher (Tanny, 2013). EC captures an ecosystem’s "breathing," quantifying 

the exchange of gases, including CO₂, between soil, vegetation, and the atmosphere. This process involves simultaneous 

measurement of gas concentration changes via the IRGA and the swirling wind’s speed and direction via the anemometer. 

The wind and gas concentration data are then processed through a complex series of calculations to determine H and λE. 

Originally developed in the 1950s by the Commonwealth Scientific and Industrial Research Organization (CSIRO), EC is 

recognized as one of the most accurate methods for directly measuring sensible and latent heat fluxes (Stanhill, 2019). 

The eddy covariance (EC) method captures turbulent flux data by calculating the covariance between fluctuations in 

vertical wind velocity and the target physical quantity, enabling direct measurement of carbon, water, and heat exchanges 

between plant communities and the atmosphere. With current technology, EC can detect even minor air mass and energy 

fluctuations across multiple timescales (hourly, daily, seasonal, and annual) and spatial scales ranging from 100 to 2000 

meters. This technique allows precise, continuous measurements of carbon and water vapor flows within an ecosystem, 

making it the most effective approach for examining interactions between the terrestrial biosphere and the atmosphere at 

an ecological scale (Friend et al., 2006; Baldocchi, 2008). Over the past 20 years, more than 500 EC observation stations 

have been established worldwide, monitoring carbon cycling across various ecosystems and forming both regional and 

global flux observation networks. The EC method enables continuous carbon flux observations between ecosystems and 

the atmosphere, recorded hourly with a sampling frequency of 10 Hz. These data, processed through established formulas, 

indirectly calculate vegetation productivity, providing valuable insights into ecosystem productivity and carbon cycling 

across representative terrestrial ecosystems. 
 

2.1.4 Weighing Lysimeters 

Weighing lysimeters directly measure evapotranspiration (ET) by monitoring changes in the mass of soil and crops within 

the lysimeter device, providing an accurate assessment of water loss through ET. For precise results, the lysimeter’s soil 

structure, composition, vegetation characteristics (such as height), and climatic conditions must closely resemble those of 

the surrounding field. Although highly accurate, lysimeter systems are costly and require complex installation and 

maintenance, limiting their use across large agricultural areas. However, lysimeters offer unique benefits, including data 

on excess irrigation percolation and soil-water retention—information difficult to obtain from other ET measurement 

methods. Lysimeters are standard ET measurement tools requiring no assumptions. First constructed in the 1830s, 

lysimeters typically consist of a round or square tank ranging from 1 to 5 square meters in area and 1 to 4 meters in depth, 

as illustrated in Figure 2. There are two types of lysimeters: (i) weighing lysimeters, which measure mass changes, and 

(ii) non-weighing lysimeters, which evaluate ET based on the discharge rate. Precipitation is recorded using a rain gauge, 

and changes in soil water content are estimated with soil moisture probes. ET can then be calculated as part of the water 

budget over defined time steps. 
 

𝐸 = 𝑃 −  ∆𝑆 − 𝑄 
 

Where E is evapotranspiration, P is the precipitation, ∆𝑆 is the change in the soil water content and Q is the drainage from 

the system. Non-weighted lysimeter is more suitable for long term estimations with reasonable cost and maintenance 

plan. The weighted lysimeter is much more costly and need  
 

 
Fig. 2 Weighing lysimetric station for ET measurement 
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2.1.5 Gas Exchange Measurement Systems 

Gas exchange measurement systems offer a precise method for estimating evapotranspiration (ET) by using an infrared 

gas analyzer (IRGA) to track gas absorption. Operating in open chambers, these systems measure differential gas 

exchanges in real-time by comparing water vapours (H₂O) and carbon dioxide (CO₂) concentrations between the 

chamber’s inlet and outlet. By analysing CO₂ exchange at the stomatal level, gas exchange systems provide insights into 

how varying atmospheric CO₂ levels affect plant transpiration and internal resistance, which directly influence ET rates. 

Elevated atmospheric CO₂, whether from greenhouse gas emissions or enrichment in controlled environments, impacts 

plant water use and growth dynamics. In greenhouses, where CO₂ levels are often raised to increase crop yield, 

understanding its effect on ET is crucial for optimizing environmental conditions. These systems help growers assess 

optimal CO₂ concentrations, balancing water use efficiency with crop productivity by monitoring how transpiration rates 

adjust with rising CO₂ levels. Thus, gas exchange systems not only provide accurate ET measurements but also enable 

researchers and growers to refine atmospheric conditions to support sustainable agriculture. Additionally, by quantifying 

differential gas exchange, these systems aid research into crop physiological responses to changing CO₂ levels—a crucial 

area as climate change alters atmospheric composition. As such, gas exchange measurement systems are invaluable in 

both field and controlled agriculture, delivering data that enhance irrigation strategies and promote resource-efficient 

productivity. 

In addition to gas exchange systems, the energy balance Bowen Ratio (BR) method provides another approach to 

ET estimation by measuring vertical gradients of air temperature (Ta) and humidity (q). The Bowen Ratio (β) is the ratio 

of sensible heat flux (H) to latent heat flux (λE), which is determined by dividing the surface available energy into H and 

λE (Wang et al., 2012). This ratio is derived from the assumption that aerodynamic resistance to heat and water vapor is 

equal within the constant flux layer, facilitating reliable ET assessments. 
 

𝛽 =  
H

λE
=  

𝐶𝑝 (𝑇𝑎1 − 𝑇𝑎2)

λ(𝑞1 − 𝑞2)
 

Where 1 and 2 represents the level BR system is cheaper than EC system and need less maintenance, but it may not be 

valid for unstable conditions. 
 

2.1.6 Mass Transfer Method  

The FAO Penman-Monteith equation provides accurate ETo estimates across various climatic conditions. However, in 

situations where climatic data are scarce, it becomes necessary to explore alternative ETo equations that can operate 

effectively with limited data. Mass transfer models, for example, primarily rely on the saturation vapor pressure deficit, as 

evident in the models’ equations presented in Table 1. 
 

Table 1 List of mass transfer equation for reference evapotranspiration estimations 

No. Model Name Year Equation 

1 Dalton 1802 𝐸𝑇𝑜 = (0.3648 +  0.07223𝑢2) × (𝑒𝑠 − 𝑒𝑎) (Dalton, 1802) 

2 Trabert 1896 𝐸𝑇𝑜 = 0.408 × 0.3075 × √𝑢2  × (𝑒𝑠 − 𝑒𝑎) (Trabert, 1896) 

3 Meyer 1926 𝐸𝑇𝑜 = (0.375 +  0.0502𝑢2) × (𝑒𝑠 − 𝑒𝑎) (Meyer, 1926) 

4 Rohwer 1931 𝐸𝑇𝑜 = 0.44(1 +  0.27𝑢2) × (𝑒𝑠 − 𝑒𝑎) (Rohwer, 1931) 

5 Penman 1948 𝐸𝑇𝑜 = 0.35(1 +  0.24𝑢2) × (𝑒𝑠 − 𝑒𝑎) (Penman, 1948) 

6 Albrecht 1950 𝐸𝑇𝑜 = (0.1005 +  0.297𝑢2) × (𝑒𝑠 − 𝑒𝑎) (Albrecht, 1950) 

7 Brockamp 1963 𝐸𝑇𝑜 = (0.543𝑢2
0.456) × (𝑒𝑠 − 𝑒𝑎) (Brockamp, 1963) 

8 WMO 1966 𝐸𝑇𝑜 = (0.1298 +  0.0934𝑢2) × (𝑒𝑠 − 𝑒𝑎) ((WMO), 1966) 

9 Mahringer 1970 𝐸𝑇𝑜 = 0.15072 × √3.6𝑢2  × (𝑒𝑠 − 𝑒𝑎) (Mahringer, 1970) 

10 Saif 2019b 𝐸𝑇𝑜 = (0.37 +  0.72𝑢2) × (𝑒𝑠 − 𝑒𝑎) 
 

ETo reference crop evapotranspiration (mm day
-1

), es saturation vapor pressure (kPa), ea actual vapor pressure (kPa), and u 

mean daily wind speed at 2 m (m s
-1

) 

 

2.1.7 Remote Sensing and Satellite Imagery Method  

Three major methods have been developed to estimate ET from remote sensing data: (1) empirical/statistical methods 

which upscale point measured or estimated ET to large scales with remotely sensed vegetation indices which has been 

addressed in (Pamela L.Naglera, 2005) (Jung, 2010); (2) physical models that calculate ET as the residual of surface 

energy balance (SEB) through remotely sensed thermal infrared data (Bastiaanssena, 1998, Su, 2002, Overgaard, 2006, 

Overgaard, 2006, Richard and Allen, 2007); (3) and other physical models such as using the Penman-Monteith logic 

(Monteith, 1965) to calculate ET (Qiaozhen Mu, 2007, Helen and Cleugh, 2007). ET is inherently difficult to measure and 

predict over extended or large area. The net solar radiation at the land surface is partitioned into sensible, latent, and 

ground heat fluxes. Land surface elements, including plants, soil, snow cover and open water bodies, absorb and reemit a 

portion of this radiant solar energy as latent heat and associated water vapor loss to the atmosphere through evaporation; 

green plants also lose water vapor to the atmosphere through leaf stomatal pores through the process of transpiration, 

particularly during photosynthesis. The total evaporated and transpired water is called evapotranspiration (Ea) as the sum 

of soil evaporation (Es), vegetation evapotranspiration (T), evaporation from open water bodies (Ew), and sublimation of 
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snow and ice (Ei). The latent heat accompanying E is λE, where λ is the latent heat of vaporization. Remote sensing (RS), 

especially from polar orbiting satellites, provides relatively frequent and spatially contiguous measurements for global 

monitoring of surface biophysical variables affecting E, including albedo, vegetation type and density. RS based mapping 

of E is a cost-effective way to estimate and monitor this flux (Zhang et al., 2016). RS-based evapotranspiration 

estimations are commonly estimated using the energy balance equation and have large footprint (regional coverage). 

Evapotranspiration remote sensing data use surface energy balance (SEB) equations to calculate ET as a “residual” of the 

energy balance. Figure 3 illustrate the main components of surface energy balance equation:  
 

ET = Rn – G – H 
 

Where, ET (Evapotranspiration), H (Heat to air), Rn (Radiation from sun), G (Heat to ground). 

The main limitations are imagery availability, cloud cover, and calibration data. SEB models are sensitive to 

clouds since clouds impact the thermal band. In the model without ground calibration if advection occurs it will introduce 

errors in the results. In the calibrated mode high quality weather data is required. The development of the ET models 

demanded a long term and intensive work in each approach.  

Remote sensing involves observing and measuring parameters without direct contact, with satellite technologies 

providing valuable data on biophysical parameters for ET assessment, such as vegetation type, density, and surface 

albedo. Two main approaches have emerged for estimating ET from remote sensing data in agriculture. The first uses 

radiometric surface temperature to distinguish between latent and sensible heat, while the second employs vegetation 

indices (VI) derived from surface reflectance, which can estimate basal crop coefficients at spatial scales. Common 

vegetation indices, like the leaf area index (LAI) and normalized difference vegetation index (NDVI), aid in estimating 

surface resistance within the Penman–Monteith model. Radiometric temperature can be refined to determine aerodynamic 

temperature using semi-empirical or empirical models that account for spatial variations in surface roughness, allowing 

for its incorporation into the Penman–Monteith equation to estimate ET rates. Basal crop coefficients derived from VIs 

enable crop-specific ET estimation from reference ET. Remote sensing-derived ET estimates cover large spatial and 

temporal scales, making them especially useful for large-scale and climate impact studies. However, regions with cloud 

cover and dust pose challenges for reliable data acquisition. While various methods, such as cloud removal and gap 

filling, have been explored to address data gaps, model linearity remains a limiting factor. Furthermore, remote sensing 

data can support data-driven models for ET estimation using techniques like machine learning, regression, and neural 

networks. These models can be integrated with physical models to parameterize subprocesses, addressing uncertainties 

and enhancing ET estimation accuracy (Hu et al., 2021).  
 

 
Fig. 3 Demonstration of surface energy balance concept 

 

2.2 Evapotranspiration Remotely Sensed Products 

2.2.1 Modis Evapotranspiration 

This project is part of the NASA/EOS initiative aimed at estimating global terrestrial evapotranspiration (ET) from Earth's 

land surface using satellite remote sensing data. The MOD16 global evapotranspiration product is a crucial tool for 

calculating regional water and energy balance, as well as soil water status, providing essential data for water resource 

management. With long-term ET data, it is possible to quantify the impacts of climate change, land use changes, and 

ecosystem disturbances (such as wildfires and insect outbreaks) on regional water resources and land surface energy 

dynamics. The MOD16 global ET/latent heat flux (LE)/potential ET (PET)/potential LE (PLE) datasets cover a vast 

109.03 million km² of global vegetated land and are available at 8-day, monthly, and annual intervals. The dataset spans 

the period from 2000 to 2010, with two key products available for analysis: 1) Net Evapotranspiration 8-Day Global at a 

500 m resolution, and 2) Net Evapotranspiration Yearly L4 at a 500 m resolution. 
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The development of MOD16 traces back to the original EOS proposal competition in 1989, where leaf area index (LAI), 

evapotranspiration, and photosynthesis/net primary production (designated as MOD15, 16, and 17, respectively) were 

proposed. In 1995, during the Algorithm Theoretical Basis Document (ATBD) review for at-launch products, NASA 

decided to focus more on MOD15 (LAI/FPAR) and MOD17 (PSN/NPP) to develop more theoretically grounded 

algorithms. As a result, MOD16 ET was deprioritized. However, in the 2003 EOS recompete, NASA selected a new 

investigator to develop the MOD16 ET product. This investigator shifted the methodology from an energy balance-

surface resistance approach to the Penman-Monteith equation, leading to a more successful and globally applicable 

algorithm. By 2010, NASA had renewed its commitment to the MODIS Science Team, and MOD16, now based on the 

Penman-Monteith algorithm, was further refined. The new MOD16 algorithm uses daily meteorological reanalysis data 

and 8-day remotely sensed vegetation property dynamics from MODIS as inputs. The refined global ET datasets 

developed using this approach have been published in peer-reviewed journals. Table 2 provides an overview of the 

different MODIS products and their descriptions. 
 

 
Fig. 4 Key publications that have significantly influenced the development and progression of remote sensing-based 

evapotranspiration (ET) science. 

 
Table 2 Different MODIS products 

Product Description 

 MODIS 8-day FPAR 
Vegetation cover fraction quantifies the proportion of 

surface net radiation distributed between soil and vegetation. 

 MODIS 8-day albedo 

 Daily surface downward solar radiation 

 Daily air temperature from meteorological 

data reanalysis 

Calculation of surface net radiation and soil heat flux is 

essential for estimating evapotranspiration (ET). 

 Daily air temperature 

 Daily vapor pressure deficit (VPD) 

 Daily relative humidity data 

 8-day MODIS LAI 

Key environmental variables include surface stomatal 

conductance, aerodynamic resistance, wet canopy 

conditions, soil heat flux, and others. 

 MODIS land cover Assign a biome type to each pixel. 

 

2.2.2 Wapor Evapotranspiration 

The Food and Agriculture Organization’s data portal for monitoring Water Productivity through Open-access Remotely 

Sensed data (FAO, IHE-Delft, IWMI, 2019) provides water productivity (WP) products derived primarily from freely 

accessible satellite remote sensing data. Actual evapotranspiration (ET) estimates include soil evaporation (E), canopy 

transpiration (T), and evaporation from rainfall intercepted by leaves (I). ET components are calculated using the ETlook 

model (Bastiaanssen, 2012), which applies the Penman-Monteith (P-M) equation, originally developed by Monteith in 

1948. This approach combines the energy balance and aerodynamic equations, as detailed in the FAO-56 drainage paper 

(Allen et al., 1998). The ETIa-WPR model calculates soil evaporation and transpiration separately, using Equations (1) 

and (2). Interception is defined as a function of vegetation cover, leaf area index (LAI), and precipitation (Blatchford, 

https://zkdx.ch/


Zhongguo Kuangye Daxue Xuebao 

517 | P a g e  

2020). The FAO portal hosts detailed products on evapotranspiration, transpiration, evaporation, and interception (FAO, 

IHE-Delft, IWMI, 2019), along with other tools for monitoring water productivity. WaPOR products have become 

benchmarks in research and publications on evapotranspiration, water resource management, water productivity, and 

SDG indicators and used in some African countries as shown in Table 3. The WaPOR dataset, available from 2009 to the 

present, offers 10-day, monthly and annual time steps. 
 

 

 
 

Blatchford (2020) emphasized the need for continued validation to assess the accuracy of WaPOR products, which are 

currently considered the highest resolution, near real-time products available. The ETIa-WaPOR product is responsive to 

general trends in ETIa magnitude across diverse climates and demonstrates strong correlations at both local (Eddy 

Covariance) and basin (Water Balance) scales. However, in arid irrigated areas, WaPOR tends to overestimate ETIa, 

particularly at coarser resolutions. The ETIa-WaPOR product shows a Mean Absolute Percentage Error (MAPE) of 

26.3% on a monthly, point scale; 40.4% on a daily, point scale; and 29.5% on an annual, basin scale. These results are 

promising, given that WaPOR provides a nearly real-time, open-access dataset covering the African continent. Analysis 

of intermediate data components indicates that over- and underestimation of ETIa by WaPOR may primarily stem from 

an overestimation of soil moisture content, which drives the overestimation of evaporation. Additional validation 

activities are recommended as new ground data becomes available, especially in cultivated and irrigated regions. In 

another study, Chukalla (2021) utilized the remotely sensed FAO WaPOR dataset to evaluate irrigation performance 

indicators at the Xinavane sugarcane estate, segmented by irrigation methods (furrow, sprinkler, and center pivot). This 

systematic approach offers a framework for using WaPOR and other remotely sensed products to assess irrigation 

performance. 

 
Table 3 Description of WaPOR V2.0 ETIa-WPR data products, available on the WaPOR portal, used for validation in some African 

Countries. 

 
Spatial 

resolution (m) 

Temporal 

resolution
 (a)

 
Spatial extent (in Africa) 

Satellite (spatial 

resolution/return period) 

Level I 

(L1) 
250 Dekadal Continental Africa MODIS (250 m|1-day) 

Level II 

(L2) 
100 Dekadal 

Benin, Burundi, Egypt, 

Ethiopia, Ghana, Kenya, 

Mali, Morocco, Niger, Rwanda, 

Sudan, Tunisia, Uganda 

MODIS (250 m|1-day)
(b)

 

PROBA-V (100 m|2-day)
(b)

 

Level III 

(L3) 
30 Dekadal 

Awash, Ethiopia, Egypt 

Koga, Mali, Niger, Zankalon, 
Landsat (30 m|16-day) 

 

Abbreviations:  

 MODIS, moderate resolution imaging spectroradiometer;  

 WaPOR, water productivity through open-access of remotely sensed derived data. 
(a) Dekadal is approximately 10 days. It splits the month into three parts, where the first and second dekads are 10 days and the third 

dekad covers the remaining days in the month. 

(b) MODIS is resampled to 100 m up to 2013 and PROBA-V is used from March 2014. 

 

3. Empirical Models for Estimating of ET  
Evapotranspiration (ET) combines two processes: evaporation from surfaces (e.g., lakes, rivers, soil, and vegetation) and 

transpiration from plants, where water is vaporized and released into the atmosphere. Evaporation requires solar energy to 

vaporize water, with the vapor pressure difference between the water surface and the air driving the vapor removal. 

Transpiration involves the movement of water from the soil through plants, eventually evaporating through leaf stomata. 

This process aids in nutrient transport and provides cooling, which is essential for plant growth. Both evaporation and 

transpiration are influenced by solar radiation, air temperature, humidity, and wind speed, with crop characteristics and 

cultivation methods also affecting transpiration. Potential evapotranspiration (ETp) represents the maximum amount of 

water that can evaporate or transpire from a fully watered surface, while reference evapotranspiration (ETo) is more 

specific to crop assessments, offering precision by accounting for crop characteristics. ET models can be categorized into 
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four main types: mass transfer models (focused on aerodynamics), temperature-based models (using only temperature, 

e.g., Hargreaves and Samani model), radiation-based models (based on energy balance, e.g., Priestley–Taylor equation), 

and combination models, which integrate aerodynamics and energy balance (e.g., Penman–Monteith and FAO56 

Penman–Monteith models). ET models can also be classified as analytical, mechanistic, or empirical. Analytical models 

rely strictly on physical laws, while mechanistic models (like Penman–Monteith) use physical laws and causal 

relationships to generate estimates. Empirical models (such as the Hargreaves model) are based on observed correlations 

and are valued for their simplicity, but they lack physical robustness and may not be regionally accurate. Mechanistic 

models are often preferred for their reliability and physical relevance, especially when sufficient input data is available, as 

they provide more accurate results compared to empirical models. 
 

3.1 Penman–Monteith Equations  

The Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) incorporates the Penman-Monteith 

method, as outlined by the United Nations Food and Agriculture Organization (FAO) (Allen et al., 1998). This method 

has been adopted by the FAO as the standard for estimating reference evapotranspiration, providing a consistent baseline 

for comparing evapotranspiration (ET) across different seasons, regions, and crop types. Evapotranspiration, the 

combined process of evaporation from soil and water surfaces and transpiration from plant tissues, can be calculated 

using either energy balance or mass transfer approaches. Evaporation requires energy, either in the form of sensible heat 

or radiant energy. The rate of ET is controlled by the energy exchange at the vegetation surface and is limited by the 

amount of available energy. As a result, ET rates can be determined from a surface energy balance. Additionally, ET 

estimation can be based on the balance of incoming and outgoing water fluxes within the soil or root zone, with the mass 

transfer approach being particularly useful for longer timeframes (e.g., weeks or more). The Penman-Monteith equation 

integrates both energy balance and mass transfer approaches (Penman, 1948; Monteith, 1965). The latent heat flux, which 

represents the ET rate, is derived as follows: 
 

ETo = (0.408 * Δ * (Rn - G) + γ * (900 / (T + 273)) * u2 * (es - ea)) / (Δ + γ * (1 + 0.34 * u2)) 

where: 

ETo = reference evapotranspiration (mm/day) 

Rn = net radiation at crop surface (MJ/m²/day) 

G = soil heat flux density (MJ/m²/day) 

T = mean daily air temperature (°C) 

u2 = wind speed at 2 m height (m/s) 

es = saturation vapor pressure (kPa) 

ea = actual vapor pressure (kPa) 

es - ea = vapor pressure deficit (kPa) 

Δ = slope of saturation vapor pressure curve (kPa/°C) 

γ = psychrometric constant (kPa/°C) 
 

In this equation, the bulk surface resistance (rs) reflects the resistance to vapor flow through plant stomata and the soil 

surface, while aerodynamic resistance (ra) reflects the resistance from air flowing over vegetated surfaces. While 

empirical ET estimation methods exist globally, many are calibrated locally, limiting their global applicability. By 

defining a “reference surface,” the FAO Penman-Monteith method avoids crop-specific calibration. ET rates for various 

crops are thus calculated relative to this reference surface using crop coefficients. This reference surface represents a 

hypothetical, well-watered grass crop (0.12 m height, surface resistance of 70 s/m, albedo of 0.23), as defined by the 

FAO. The assumptions of a uniform, extensive grass surface with one-dimensional fluxes upward simplify global 

application. The parameterization of the Penman-Monteith method depends entirely on atmospheric conditions such as 

solar radiation, air temperature, humidity, and wind speed, which should be measured at a standard 2-meter height above 

the ground. 
 

3.2 Application of Stanghellini Model 

The Stanghellini model, developed specifically for greenhouse environments, is widely used to estimate crop 

evapotranspiration (ET) based on the energy balance method. This model takes into account key parameters like 

temperature, humidity, solar radiation, and vapor pressure deficit, all of which play significant roles in the microclimate 

control of greenhouse crops. Unlike models that rely on direct field measurements, the Stanghellini model is designed to 

operate within a controlled environment, making it especially useful in horticultural production and greenhouse 

management where climate parameters can vary significantly from open field conditions. The model's primary advantage 

lies in its precision within greenhouse environments, where external climatic influences are moderated, allowing for better 

control over variables such as ventilation, shading, and irrigation. It calculates ET based on the premise that greenhouse 

crop water use can be efficiently managed by controlling internal climate factors, thus reducing water stress and 

promoting healthier plant growth. However, its application requires precise input data, including accurate readings of 

solar radiation and temperature within the greenhouse. The model has been applied extensively to a variety of crops, 

including tomatoes, cucumbers, and peppers, proving effective in supporting optimal irrigation scheduling, which is 
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critical for maximizing crop yield and quality in water-limited settings. Studies comparing the Stanghellini model with 

other ET models, such as the Penman-Monteith and FAO-56 models, have shown that it often provides a closer 

approximation to actual ET in greenhouse conditions. Nonetheless, the accuracy of the Stanghellini model can vary 

depending on the greenhouse setup and crop type. For example, studies have observed that crops with high leaf area 

indexes or those grown in high-density plantings may experience differences in evapotranspiration rates that require 

further calibration of the model parameters to ensure precision. Additionally, greenhouse structures with variable 

ventilation and shading practices may affect the model’s reliability, necessitating site-specific adjustments to optimize ET 

predictions. To address these limitations, modifications of the Stanghellini model have been proposed, such as the 

inclusion of crop-specific calibration factors that account for unique physiological characteristics, such as stomatal 

behavior and transpiration efficiency. Furthermore, integrating the Stanghellini model with real-time climate control 

systems enhances its utility, as continuous monitoring and adjustment of environmental conditions can improve ET 

estimates and irrigation scheduling accuracy. In modern greenhouse management, coupling the Stanghellini model with 

automated systems like soil moisture sensors and climate data loggers allows for responsive and efficient water use, 

reducing the risk of water wastage and enhancing crop water productivity. Despite its greenhouse-focused application, the 

model has also been adapted for use in semi-controlled environments, extending its relevance in regions where precise 

water management is crucial due to limited water resources. Overall, the Stanghellini model offers a robust approach to 

determining crop ET in controlled environments, aligning well with the increasing demand for sustainable water 

management practices in agriculture, particularly within water-scarce regions and high-intensity farming systems where 

resource efficiency is paramount. However, for large-scale implementation and adaptability across diverse crop types and 

greenhouse setups, continuous calibration and validation remain essential to ensure the model's reliability and relevance 

across varied agricultural conditions. 
 

3.3 Priestley-Taylor Model 

The Priestley-Taylor model is a widely recognized approach for estimating evapotranspiration (ET), particularly in 

scenarios where water is not limited and energy availability predominantly controls ET rates. This model simplifies the 

complex processes involved in ET estimation by focusing primarily on the balance between incoming solar energy and 

outgoing heat, assuming that evaporation from open water or well-watered vegetation can be closely approximated by 

atmospheric conditions. The Priestley-Taylor model uses a simplified version of the Penman equation, omitting the 

aerodynamic component, which represents the effect of wind and humidity gradients on ET. Instead, it introduces a 

proportionality constant (often denoted as α, typically valued at 1.26 for wet conditions) that accounts for the energy 

balance under near-saturated conditions. This constant is crucial, as it adjusts the model to reflect the fact that ET rates are 

largely driven by available energy rather than soil moisture limitations in well-watered ecosystems. By applying this 

model, ET can be estimated accurately in regions where water is not a limiting factor, such as wetlands, large bodies of 

open water, or well-irrigated croplands. One of the Priestley-Taylor model’s primary strengths is its relative simplicity, 

which allows it to be applied with fewer input parameters than other models, such as the Penman-Monteith model. This 

simplicity makes it especially useful for large-scale applications where detailed data on wind speed, humidity, and 

vegetation characteristics may be lacking. The model primarily requires net radiation, temperature, and the slope of the 

saturation vapor pressure curve, making it ideal for broad-scale climatic or hydrological assessments where data 

collection might be constrained. However, its reliance on the assumption of an abundant water supply limits its 

application in arid or semi-arid environments, where soil moisture deficits frequently affect ET. In these water-limited 

conditions, the Priestley-Taylor model may overestimate ET since it does not account for reductions in ET rates due to 

insufficient soil moisture. This limitation can be mitigated to some extent by adjusting the α constant to reflect varying 

degrees of water availability, but this requires region-specific calibration and can introduce additional uncertainties. 

Despite these limitations, the model is still highly applicable in assessing ET for landscapes dominated by water bodies or 

well-irrigated areas. The Priestley-Taylor model has been widely used in hydrological studies, watershed management, 

and climate modeling, particularly in understanding how ET responds to changes in energy input due to seasonal 

variations or climate change. Studies comparing the model with field measurements or more data-intensive models often 

demonstrate its effectiveness in capturing the overall trends in ET for wet conditions, although it may lack the precision 

needed for fine-scale agricultural planning or drought-prone regions. Recent advancements have also led to modifications 

of the Priestley-Taylor model to improve its adaptability, such as incorporating dynamic α values or coupling it with soil 

moisture data to increase its accuracy across diverse ecosystems. Overall, the Priestley-Taylor model remains an essential 

tool in hydrology and climatology, especially for studies that require a simple yet reliable estimate of ET driven 

predominantly by energy availability, making it valuable for large-scale environmental assessments where data 

availability and simplicity are prioritized. 

 

4. Hydrological Modelling Development Trends  
Hydrological models are essential tools for understanding and managing the water cycle, as they simulate the interactions 

between its various components while simplifying the inherent complexity of these processes. These models serve two 

primary purposes. First, they are used to study natural hydrological processes, with the goal of understanding the laws 

governing the water cycle. In this context, models are developed through rigorous experimentation and mathematical 
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formulations that attempt to closely mimic real-world hydrological processes. This often results in complex models, such 

as the SHE model, which aim to represent these processes in high detail for accurate predictions and analysis. Second, 

hydrological models are often constructed to address specific practical issues, where the aim is not only to solve a 

particular water-related problem but to do so in a way that balances accuracy with efficiency. For these applications, 

simpler models are frequently preferred as they streamline less critical processes, making them easier to apply in diverse 

scenarios while still providing reliable results. The trend in developing methods for evapotranspiration (ET) estimation 

within hydrological models reflects these two modeling objectives. On one side, integrated approaches prioritize 

simplicity, focusing on basic relationships and changes in ET without diving into intricate detail. This trend caters to 

practical applications where quick, manageable estimations of evapotranspiration are needed. On the other side, 

classification-based methods are increasingly evolving to embrace complex mechanisms, employing detailed equations to 

account for water quantities across various forms of evapotranspiration and the associated energy transformations. This 

method is more comprehensive, capturing the nuances of ET for more precise estimations that factor in diverse conditions 

and drivers. Thus, two key trends in ET estimation are emerging: a move toward simplified models for ease of practical 

use and a parallel development of sophisticated models that delve into greater complexity for a more granular 

understanding of water and energy fluxes. These evolving trends address the dual demands for hydrological models that 

are both accessible for real-world applications and capable of providing detailed insights into hydrological processes, 

aligning with the broader goals of effective water resource management. 

ET models vary in terms of application, input requirements, and time-step, and can incorporate both mechanistic 

and empirical approaches with direct or indirect measurements depending on the available data and intended use as shown 

in Figure 5. The original Penman–Monteith equation is a powerful model for ET estimation, as it integrates both 

aerodynamic and surface resistances. However, calculating surface resistance accurately requires extensive data 

collection, which can be a limitation. The FAO56 simplified Penman–Monteith model replaces this variable with a fixed 

term based on reference crop and standard conditions, offering easier application but sometimes compromising accuracy. 

The Priestley–Taylor model, which requires fewer inputs, is an alternative when aerodynamic data are unavailable, 

although it may underestimate ET under advective conditions. Similarly, the Hargreaves and Samani model is useful 

when limited meteorological data (especially solar radiation) are available, yet the inclusion of an empirical constant can 

lead to ET overestimations. Several studies have compared mechanistic and empirical models in greenhouse applications. 

For instance, [15] observed that the Stanghellini model produced more accurate ET estimates in greenhouse environments 

than the Penman–Monteith model, with a model efficiency (R²) of 0.872 versus 0.481, likely due to better parametrization 

of canopy and aerodynamic resistances and sensitivity to the microclimate within greenhouses. Research suggests that ET 

models may be adapted to greenhouse conditions by collecting temperature and humidity data from within the canopy 

instead of above it, as this can improve accuracy in ET estimates for greenhouse crops [75]. Accurate leaf surface 

temperature measurements, through thermocouples, infrared thermometry, or thermal imaging, can also enhance model 

precision. The Stanghellini model, with its inclusion of leaf area index and net solar radiation adjustments, performs well 

in greenhouse settings, especially in capturing ET for multi-layered canopy structures where microclimate influences 

internal canopy resistance. The model has shown to be accurate for unheated, naturally ventilated greenhouses as well as 

cooled greenhouses with fogging systems. For open-field applications, the FAO56 Penman–Monteith model is generally 

effective; however, if climate variations or specific stress conditions (e.g., high CO₂ or salinity) affect ET, the original 

Penman–Monteith model is preferable. In these cases, direct measurements of stomatal and boundary layer resistances 

can refine ET estimates. Instruments such as weighing lysimeters, eddy covariance, and gas exchange systems, although 

costly, are useful for high-precision ET estimation in research settings, allowing model calibration for specific climatic 

and agronomic conditions. Overall, while adapting ET models can improve accuracy, the high cost of precise 

measurement systems presents a trade-off, especially for commercial agriculture, where these systems are typically 

reserved for research-focused model enhancement based on location-specific meteorological and agronomic conditions. 

The Stanghellini model remains the optimal choice for greenhouse environments, adaptable to factors like architecture, 

ventilation, crop type, and irrigation system, balancing cost with the improved reliability of ET estimates. 
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Fig. 5 Development Trends in ET measurement technique and models. 

 

5. The Role of ET Measurement in Optimizing WEF Nexus 
The rapidly growing population and rising economic activity create significant challenges in meeting increasing energy, 

water, and food demands. The interdependencies among the energy, water, and food sectors underscore the need for a 

holistic nexus approach to address these challenges effectively. Water plays a crucial role within the EWF nexus, 

supporting energy production (e.g., hydropower), water supply, and food production (e.g., agricultural irrigation). 

Consequently, accurate assessment and forecasting of water availability in these sectors are essential (Kan et al. 2018). 

The agricultural sector, responsible for 3.5% to 4.8% of total energy consumption and 70% of global freshwater 

withdrawals, is projected to require a 50% increase in irrigation water by 2050 to meet the anticipated 60% rise in food 

demand, highlighting the importance of improved irrigation practices for food security (Bazilian et al., 2011). Irrigation 

water requirements are a key point of interaction in the EWF nexus, with water and energy systems closely linked through 

the direct energy needed for pumping and desalinating water for irrigation. Inaccurate measurement of irrigation needs 

can lead to inefficient energy use (FAO, 2017). Agriculture also consumes indirect energy via fertilizers, creating a vital 

energy-food nexus (Lahlou et al., 2020). For instance, spikes in fertilizer and fuel costs have contributed to increased food 

prices. Proper assessment and management of fertilizer type and quantity are essential since nutrient uptake by plants 

varies with soil moisture and transpiration rates. Overestimating ET can result in excessive irrigation, leading to nutrient 

leaching into groundwater. 

Nutrient and water interactions are directly tied to plant growth, with outcomes dependent on their balance. 

Optimal irrigation enhances nutrient availability and supports their transformation into bioavailable forms. For example, 

the mineralization of soil or fertilizer-derived nitrogen is highly influenced by soil moisture levels. Ammonium 

nitrification increases with sufficient moisture but is vulnerable to leaching under excessive irrigation. Adequate soil 

moisture ensures nitrification, while too much or too little inhibits the process (Li et al., 2009). Low soil moisture reduces 

nutrient uptake of elements like sodium, potassium, calcium, magnesium, and zinc, which can lower the overall dry 

weight of avocado leaves, stems, and fruits (Slowik et al., 1979). Conversely, excessive soil moisture can also negatively 

impact plants, such as reducing iron and zinc concentrations in avocado leaves. Similar effects have been observed in 

citrus plants, where excess moisture limits the intake of calcium, magnesium, and iron in seedlings (Labanauskas et al, 

1965). This close link between water and nutrient efficiency makes it vital to determine nutrient ratios and irrigation 

requirements carefully and monitor their supply to optimize plant health and growth. Calcium deficiency is another issue 

affected by water availability and transpiration rates. Calcium moves through the plant’s xylem, driven primarily by 

transpiration, and high fruit surface-to-volume ratios promote transpiration and calcium uptake. As fruits grow and wax 

accumulates, transpiration slows, reducing calcium flow. Research shows that enhancing plant transpiration is more 

effective for addressing calcium deficiencies than adding calcium to the substrate. Climate factors, such as low solar 

radiation and high humidity, have also been linked to calcium deficiencies in tomatoes, which manifest as leaf damage 

and yield reduction. These climate parameters influence ET rates, so assessing them helps to anticipate and manage 

climate impacts on crop growth and yield. For tomatoes, lowering humidity to counterbalance high solar intensity can 
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increase transpiration and help regulate calcium flow in plants [28]. Similarly, excessive transpiration can cause calcium 

deficiencies in low-transpiring crops like cauliflower, lettuce, and cabbage by diverting calcium predominantly to outer 

leaves, leaving inner leaves undernourished. Advances in agricultural systems often come with increased water and 

energy demands. Greenhouses exemplify yield-improvement systems that provide a controlled microclimate, but 

regulating parameters like temperature and humidity requires substantial energy input for heating, cooling, and ventilation 

systems. These parameters influence ET rates and, consequently, irrigation needs. CO₂ enrichment is another strategy to 

boost yields and reduce water use in greenhouses, typically achieved through commercial or industrial CO₂ or gas 

burners, which add energy costs. Elevated CO₂ levels reduce ET by causing stomata to partially close, impacting gas 

exchange (water vapor and CO₂) and necessitating adjustments in ET estimates and irrigation requirements. Failing to 

adjust ET calculations for new microclimate settings can lead to inefficient resource use and unnecessary energy and 

water consumption in greenhouses. 

 

6. Conclusions and Recommendations 
ET is essential in maintaining water balance, as it consumes water from plant interception, surface water, and soil 

moisture. In humid areas, ET accounts for approximately 50% of annual precipitation, while in arid regions, it can 

represent up to 90%. However, direct observation of actual ET is challenging and sensitive to external factors, making 

indirect estimation methods more common. Estimating actual ET through hydrological cycle simulations is crucial for 

adaptive water resource management, especially under changing environmental conditions. Numerous ET estimation 

methods exist within hydrological models, which are broadly classified into two main types: classification gathering 

methods and integrated converting methods. Classification gathering methods estimate various forms of ET individually 

before aggregating them to determine basin-wide ET based on land use patterns. In contrast, integrated converting 

methods estimate potential ET and adjust it to actual ET based on soil moisture content, with variations across methods in 

how they calculate potential ET and model soil moisture extraction. This review summarizes the most potential ET 

estimation methods and several soil moisture extraction functions, providing a comprehensive overview of the different 

approaches. However, uncertainties remain in model input, output, and structure, particularly for the physically based 

Penman-Monteith method, which requires extensive data. These uncertainties can impact the accuracy of hydrological 

simulations, underscoring the need for careful selection of ET estimation equations and soil moisture functions that align 

with each hydrological model’s requirements to minimize inaccuracies. Moving forward, two main development trends 

are anticipated: first, an increase in the complexity of ET estimation methods within hydrological models to capture a 

broader range of conditions, and second, a simplification driven by research to enhance their practical usability for a 

wider range of applications. 
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